L(s) = 1 | − 2i·2-s − 4·4-s + 23i·7-s + 8i·8-s + 30·11-s + 34i·13-s + 46·14-s + 16·16-s − 42i·17-s + 139·19-s − 60i·22-s − 192i·23-s + 68·26-s − 92i·28-s − 234·29-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.5·4-s + 1.24i·7-s + 0.353i·8-s + 0.822·11-s + 0.725i·13-s + 0.878·14-s + 0.250·16-s − 0.599i·17-s + 1.67·19-s − 0.581i·22-s − 1.74i·23-s + 0.512·26-s − 0.620i·28-s − 1.49·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.948077068\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.948077068\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 2iT \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 23iT - 343T^{2} \) |
| 11 | \( 1 - 30T + 1.33e3T^{2} \) |
| 13 | \( 1 - 34iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 42iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 139T + 6.85e3T^{2} \) |
| 23 | \( 1 + 192iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 234T + 2.43e4T^{2} \) |
| 31 | \( 1 + 55T + 2.97e4T^{2} \) |
| 37 | \( 1 - 191iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 138T + 6.89e4T^{2} \) |
| 43 | \( 1 + 53iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 366iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 330iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 396T + 2.05e5T^{2} \) |
| 61 | \( 1 - 23T + 2.26e5T^{2} \) |
| 67 | \( 1 - 452iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 204T + 3.57e5T^{2} \) |
| 73 | \( 1 - 691iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 709T + 4.93e5T^{2} \) |
| 83 | \( 1 + 1.09e3iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 816T + 7.04e5T^{2} \) |
| 97 | \( 1 - 905iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.198332325488581750882798452470, −8.918711807810749363964605666697, −7.80517189333905903915727446340, −6.79520705165701299812025387110, −5.84408649574187243833065410715, −5.03118314197903679268832560075, −4.06120804337144436867189475944, −2.98233355757029309152521709874, −2.14823276783165838146648620826, −0.996711207653808070261584069649,
0.54816388286798262476736766119, 1.56476808537157535037200275645, 3.52749027710271547491704356211, 3.84046592406864886065674703122, 5.19142333856758056245891650680, 5.79654734428314153900682027796, 6.95858885433513371841813469362, 7.45412282331189108906789588007, 8.089315436676468617745924990323, 9.333771564473443982250173851948