L(s) = 1 | + (−1.04 − 1.80i)2-s + (−1.17 + 2.03i)4-s + (0.5 − 0.866i)5-s + (−2.04 − 3.53i)7-s + 0.734·8-s − 2.08·10-s + (−0.675 − 1.17i)11-s + (−0.324 + 0.561i)13-s + (−4.26 + 7.38i)14-s + (1.58 + 2.74i)16-s + 1.35·17-s + 0.648·19-s + (1.17 + 2.03i)20-s + (−1.41 + 2.44i)22-s + (2.39 − 4.14i)23-s + ⋯ |
L(s) = 1 | + (−0.737 − 1.27i)2-s + (−0.587 + 1.01i)4-s + (0.223 − 0.387i)5-s + (−0.772 − 1.33i)7-s + 0.259·8-s − 0.659·10-s + (−0.203 − 0.353i)11-s + (−0.0898 + 0.155i)13-s + (−1.13 + 1.97i)14-s + (0.396 + 0.686i)16-s + 0.327·17-s + 0.148·19-s + (0.262 + 0.455i)20-s + (−0.300 + 0.520i)22-s + (0.499 − 0.864i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.956 + 0.292i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.956 + 0.292i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0955859 - 0.638489i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0955859 - 0.638489i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
good | 2 | \( 1 + (1.04 + 1.80i)T + (-1 + 1.73i)T^{2} \) |
| 7 | \( 1 + (2.04 + 3.53i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (0.675 + 1.17i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (0.324 - 0.561i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 1.35T + 17T^{2} \) |
| 19 | \( 1 - 0.648T + 19T^{2} \) |
| 23 | \( 1 + (-2.39 + 4.14i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.93 - 3.35i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.84 + 6.66i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 7.52T + 37T^{2} \) |
| 41 | \( 1 + (0.0898 - 0.155i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.410 - 0.710i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.45 - 9.44i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 4.17T + 53T^{2} \) |
| 59 | \( 1 + (-2.08 + 3.61i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.91 - 3.30i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (4.07 - 7.05i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 6.11T + 71T^{2} \) |
| 73 | \( 1 + 12.3T + 73T^{2} \) |
| 79 | \( 1 + (5.17 + 8.95i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (6.12 + 10.6i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 3T + 89T^{2} \) |
| 97 | \( 1 + (-6.79 - 11.7i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.72168879706398241974917612632, −11.53590345277491164763831567213, −10.55800846576947526319141224132, −9.906111900359676069335126130551, −8.969154011038155017958667532906, −7.69921375364466043029852902976, −6.23644424228524570504671216909, −4.26288910081781160075540917074, −2.89777760502808939558800778458, −0.875053762900632261800193946079,
2.88410088745122794489392423958, 5.35186945034390950931574169800, 6.21594770802415375525296845687, 7.22394298586076588066659082467, 8.396125377184848103919438649662, 9.343240480375625926530965664825, 10.08713165421785826801485754606, 11.74267563200221298400325723821, 12.70876327106755246570692635315, 14.00967171059598550915500280824