Properties

Label 2-135-135.122-c1-0-14
Degree $2$
Conductor $135$
Sign $-0.100 + 0.994i$
Analytic cond. $1.07798$
Root an. cond. $1.03825$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.490 + 0.343i)2-s + (−1.72 − 0.150i)3-s + (−0.561 − 1.54i)4-s + (−1.25 − 1.85i)5-s + (−0.794 − 0.665i)6-s + (−0.0636 − 0.136i)7-s + (0.563 − 2.10i)8-s + (2.95 + 0.518i)9-s + (0.0215 − 1.33i)10-s + (−3.54 − 4.23i)11-s + (0.737 + 2.74i)12-s + (1.08 + 1.54i)13-s + (0.0156 − 0.0887i)14-s + (1.88 + 3.38i)15-s + (−1.51 + 1.27i)16-s + (1.18 + 4.40i)17-s + ⋯
L(s)  = 1  + (0.346 + 0.242i)2-s + (−0.996 − 0.0866i)3-s + (−0.280 − 0.771i)4-s + (−0.560 − 0.828i)5-s + (−0.324 − 0.271i)6-s + (−0.0240 − 0.0515i)7-s + (0.199 − 0.744i)8-s + (0.984 + 0.172i)9-s + (0.00682 − 0.422i)10-s + (−1.07 − 1.27i)11-s + (0.212 + 0.792i)12-s + (0.300 + 0.429i)13-s + (0.00418 − 0.0237i)14-s + (0.486 + 0.873i)15-s + (−0.379 + 0.318i)16-s + (0.286 + 1.06i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.100 + 0.994i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.100 + 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(135\)    =    \(3^{3} \cdot 5\)
Sign: $-0.100 + 0.994i$
Analytic conductor: \(1.07798\)
Root analytic conductor: \(1.03825\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{135} (122, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 135,\ (\ :1/2),\ -0.100 + 0.994i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.493841 - 0.546434i\)
\(L(\frac12)\) \(\approx\) \(0.493841 - 0.546434i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (1.72 + 0.150i)T \)
5 \( 1 + (1.25 + 1.85i)T \)
good2 \( 1 + (-0.490 - 0.343i)T + (0.684 + 1.87i)T^{2} \)
7 \( 1 + (0.0636 + 0.136i)T + (-4.49 + 5.36i)T^{2} \)
11 \( 1 + (3.54 + 4.23i)T + (-1.91 + 10.8i)T^{2} \)
13 \( 1 + (-1.08 - 1.54i)T + (-4.44 + 12.2i)T^{2} \)
17 \( 1 + (-1.18 - 4.40i)T + (-14.7 + 8.5i)T^{2} \)
19 \( 1 + (-6.55 + 3.78i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (0.883 + 0.412i)T + (14.7 + 17.6i)T^{2} \)
29 \( 1 + (0.486 + 2.75i)T + (-27.2 + 9.91i)T^{2} \)
31 \( 1 + (-1.70 + 0.622i)T + (23.7 - 19.9i)T^{2} \)
37 \( 1 + (-5.71 + 1.53i)T + (32.0 - 18.5i)T^{2} \)
41 \( 1 + (0.682 + 0.120i)T + (38.5 + 14.0i)T^{2} \)
43 \( 1 + (-0.151 + 1.73i)T + (-42.3 - 7.46i)T^{2} \)
47 \( 1 + (-10.0 + 4.70i)T + (30.2 - 36.0i)T^{2} \)
53 \( 1 + (-0.204 - 0.204i)T + 53iT^{2} \)
59 \( 1 + (-0.796 - 0.668i)T + (10.2 + 58.1i)T^{2} \)
61 \( 1 + (-9.12 - 3.32i)T + (46.7 + 39.2i)T^{2} \)
67 \( 1 + (8.96 - 6.27i)T + (22.9 - 62.9i)T^{2} \)
71 \( 1 + (2.53 + 1.46i)T + (35.5 + 61.4i)T^{2} \)
73 \( 1 + (9.95 + 2.66i)T + (63.2 + 36.5i)T^{2} \)
79 \( 1 + (11.9 - 2.10i)T + (74.2 - 27.0i)T^{2} \)
83 \( 1 + (-4.10 + 5.85i)T + (-28.3 - 77.9i)T^{2} \)
89 \( 1 + (-6.74 - 11.6i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-3.56 - 0.311i)T + (95.5 + 16.8i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.18957846515826155269344672467, −11.91077916806886876979344121579, −11.02868742165914101713019480024, −10.05607766102034303041529006115, −8.750300361978908354437387477524, −7.42363863047464896619629994791, −5.92621320891224167720765791253, −5.29713668018795731347351559366, −4.07287566410252976896173388974, −0.814014243656755388090544474755, 2.96017761384718672351140015571, 4.39077651931581088983723852960, 5.52112011374164125976556929090, 7.26715385019232458961966543370, 7.74202558363126038463070146248, 9.694852260391225807540473942689, 10.64251055531224994024150018341, 11.71833772534935834052710702368, 12.25383545941264707693981707490, 13.23840486823610979098726559783

Graph of the $Z$-function along the critical line