Properties

Label 2-135-135.122-c1-0-13
Degree $2$
Conductor $135$
Sign $-0.584 + 0.811i$
Analytic cond. $1.07798$
Root an. cond. $1.03825$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.08 − 0.761i)2-s + (0.660 − 1.60i)3-s + (−0.0804 − 0.221i)4-s + (1.23 − 1.86i)5-s + (−1.93 + 1.23i)6-s + (0.827 + 1.77i)7-s + (−0.768 + 2.86i)8-s + (−2.12 − 2.11i)9-s + (−2.76 + 1.08i)10-s + (−2.76 − 3.29i)11-s + (−0.407 − 0.0172i)12-s + (2.90 + 4.15i)13-s + (0.451 − 2.56i)14-s + (−2.16 − 3.20i)15-s + (2.66 − 2.23i)16-s + (−0.828 − 3.09i)17-s + ⋯
L(s)  = 1  + (−0.769 − 0.538i)2-s + (0.381 − 0.924i)3-s + (−0.0402 − 0.110i)4-s + (0.551 − 0.833i)5-s + (−0.791 + 0.505i)6-s + (0.312 + 0.670i)7-s + (−0.271 + 1.01i)8-s + (−0.708 − 0.705i)9-s + (−0.873 + 0.344i)10-s + (−0.833 − 0.993i)11-s + (−0.117 − 0.00499i)12-s + (0.806 + 1.15i)13-s + (0.120 − 0.684i)14-s + (−0.560 − 0.828i)15-s + (0.665 − 0.558i)16-s + (−0.200 − 0.749i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.584 + 0.811i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.584 + 0.811i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(135\)    =    \(3^{3} \cdot 5\)
Sign: $-0.584 + 0.811i$
Analytic conductor: \(1.07798\)
Root analytic conductor: \(1.03825\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{135} (122, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 135,\ (\ :1/2),\ -0.584 + 0.811i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.385635 - 0.752733i\)
\(L(\frac12)\) \(\approx\) \(0.385635 - 0.752733i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.660 + 1.60i)T \)
5 \( 1 + (-1.23 + 1.86i)T \)
good2 \( 1 + (1.08 + 0.761i)T + (0.684 + 1.87i)T^{2} \)
7 \( 1 + (-0.827 - 1.77i)T + (-4.49 + 5.36i)T^{2} \)
11 \( 1 + (2.76 + 3.29i)T + (-1.91 + 10.8i)T^{2} \)
13 \( 1 + (-2.90 - 4.15i)T + (-4.44 + 12.2i)T^{2} \)
17 \( 1 + (0.828 + 3.09i)T + (-14.7 + 8.5i)T^{2} \)
19 \( 1 + (0.776 - 0.448i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (-5.07 - 2.36i)T + (14.7 + 17.6i)T^{2} \)
29 \( 1 + (-1.14 - 6.50i)T + (-27.2 + 9.91i)T^{2} \)
31 \( 1 + (-2.27 + 0.828i)T + (23.7 - 19.9i)T^{2} \)
37 \( 1 + (-6.96 + 1.86i)T + (32.0 - 18.5i)T^{2} \)
41 \( 1 + (-8.33 - 1.47i)T + (38.5 + 14.0i)T^{2} \)
43 \( 1 + (-0.112 + 1.28i)T + (-42.3 - 7.46i)T^{2} \)
47 \( 1 + (7.46 - 3.48i)T + (30.2 - 36.0i)T^{2} \)
53 \( 1 + (0.947 + 0.947i)T + 53iT^{2} \)
59 \( 1 + (3.72 + 3.12i)T + (10.2 + 58.1i)T^{2} \)
61 \( 1 + (7.90 + 2.87i)T + (46.7 + 39.2i)T^{2} \)
67 \( 1 + (7.90 - 5.53i)T + (22.9 - 62.9i)T^{2} \)
71 \( 1 + (-4.92 - 2.84i)T + (35.5 + 61.4i)T^{2} \)
73 \( 1 + (-4.93 - 1.32i)T + (63.2 + 36.5i)T^{2} \)
79 \( 1 + (0.410 - 0.0724i)T + (74.2 - 27.0i)T^{2} \)
83 \( 1 + (5.31 - 7.59i)T + (-28.3 - 77.9i)T^{2} \)
89 \( 1 + (0.974 + 1.68i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-13.4 - 1.17i)T + (95.5 + 16.8i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.91367658790391417727404483829, −11.69530641071313294473419824385, −10.98176171028967248877855206889, −9.308526850978712510502182704852, −8.892903618868934054203350300590, −8.009186588616634728327075304729, −6.22857402364380301696442453055, −5.19238674874151718463423536290, −2.59693560811058655491429749554, −1.23660005950133431018710286338, 2.94556054987299225144892204031, 4.39755040275831450605930647962, 6.09038107075962726645398179901, 7.50328055711080531059022987259, 8.240805960190396419976996160481, 9.505566091230385214389133607507, 10.35403744770705492220687688504, 10.90098527445097283757890217341, 12.87280355844606894534854445156, 13.64926104024473017328998367456

Graph of the $Z$-function along the critical line