Properties

Label 2-135-135.113-c3-0-27
Degree $2$
Conductor $135$
Sign $0.951 - 0.307i$
Analytic cond. $7.96525$
Root an. cond. $2.82227$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.07 + 0.0941i)2-s + (5.17 − 0.517i)3-s + (−6.72 − 1.18i)4-s + (9.59 + 5.73i)5-s + (5.61 − 0.0704i)6-s + (14.8 + 10.3i)7-s + (−15.4 − 4.14i)8-s + (26.4 − 5.35i)9-s + (9.79 + 7.07i)10-s + (−2.20 + 6.06i)11-s + (−35.4 − 2.65i)12-s + (1.13 + 12.9i)13-s + (14.9 + 12.5i)14-s + (52.5 + 24.6i)15-s + (35.0 + 12.7i)16-s + (111. − 29.7i)17-s + ⋯
L(s)  = 1  + (0.380 + 0.0332i)2-s + (0.995 − 0.0996i)3-s + (−0.841 − 0.148i)4-s + (0.858 + 0.512i)5-s + (0.381 − 0.00479i)6-s + (0.800 + 0.560i)7-s + (−0.684 − 0.183i)8-s + (0.980 − 0.198i)9-s + (0.309 + 0.223i)10-s + (−0.0604 + 0.166i)11-s + (−0.851 − 0.0637i)12-s + (0.0241 + 0.275i)13-s + (0.286 + 0.240i)14-s + (0.905 + 0.424i)15-s + (0.548 + 0.199i)16-s + (1.58 − 0.424i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.951 - 0.307i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.951 - 0.307i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(135\)    =    \(3^{3} \cdot 5\)
Sign: $0.951 - 0.307i$
Analytic conductor: \(7.96525\)
Root analytic conductor: \(2.82227\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{135} (113, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 135,\ (\ :3/2),\ 0.951 - 0.307i)\)

Particular Values

\(L(2)\) \(\approx\) \(2.71282 + 0.428040i\)
\(L(\frac12)\) \(\approx\) \(2.71282 + 0.428040i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-5.17 + 0.517i)T \)
5 \( 1 + (-9.59 - 5.73i)T \)
good2 \( 1 + (-1.07 - 0.0941i)T + (7.87 + 1.38i)T^{2} \)
7 \( 1 + (-14.8 - 10.3i)T + (117. + 322. i)T^{2} \)
11 \( 1 + (2.20 - 6.06i)T + (-1.01e3 - 855. i)T^{2} \)
13 \( 1 + (-1.13 - 12.9i)T + (-2.16e3 + 381. i)T^{2} \)
17 \( 1 + (-111. + 29.7i)T + (4.25e3 - 2.45e3i)T^{2} \)
19 \( 1 + (28.5 - 16.4i)T + (3.42e3 - 5.94e3i)T^{2} \)
23 \( 1 + (87.8 + 125. i)T + (-4.16e3 + 1.14e4i)T^{2} \)
29 \( 1 + (160. - 134. i)T + (4.23e3 - 2.40e4i)T^{2} \)
31 \( 1 + (-6.38 + 36.2i)T + (-2.79e4 - 1.01e4i)T^{2} \)
37 \( 1 + (86.2 + 322. i)T + (-4.38e4 + 2.53e4i)T^{2} \)
41 \( 1 + (154. - 184. i)T + (-1.19e4 - 6.78e4i)T^{2} \)
43 \( 1 + (69.5 + 149. i)T + (-5.11e4 + 6.09e4i)T^{2} \)
47 \( 1 + (100. - 143. i)T + (-3.55e4 - 9.75e4i)T^{2} \)
53 \( 1 + (178. - 178. i)T - 1.48e5iT^{2} \)
59 \( 1 + (415. - 151. i)T + (1.57e5 - 1.32e5i)T^{2} \)
61 \( 1 + (126. + 719. i)T + (-2.13e5 + 7.76e4i)T^{2} \)
67 \( 1 + (777. - 68.0i)T + (2.96e5 - 5.22e4i)T^{2} \)
71 \( 1 + (160. + 92.8i)T + (1.78e5 + 3.09e5i)T^{2} \)
73 \( 1 + (-33.0 + 123. i)T + (-3.36e5 - 1.94e5i)T^{2} \)
79 \( 1 + (-2.86 - 3.41i)T + (-8.56e4 + 4.85e5i)T^{2} \)
83 \( 1 + (-78.4 + 896. i)T + (-5.63e5 - 9.92e4i)T^{2} \)
89 \( 1 + (-176. - 305. i)T + (-3.52e5 + 6.10e5i)T^{2} \)
97 \( 1 + (-83.1 + 38.7i)T + (5.86e5 - 6.99e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.00756090026146548607537254300, −12.16873387120977802712090689245, −10.47012460255966960580545528875, −9.552606316198259548942873836261, −8.722267003054189320472455915713, −7.60084516841704652075674608141, −6.01533942015324179951898687401, −4.83933543322691818008764698883, −3.33920840703825732907546821557, −1.83087528294467511412781083910, 1.48974706760253337369437384406, 3.40376638236257751478342609948, 4.61120940457286890409312763615, 5.71424716395390779541894376853, 7.73476107678879576922540700201, 8.449566750413762545695799011917, 9.571570657331587794026257716084, 10.26819499225396158687180773148, 12.02404317629429626839708615051, 13.12744675490099931439131683074

Graph of the $Z$-function along the critical line