Properties

Label 2-135-135.113-c1-0-0
Degree $2$
Conductor $135$
Sign $-0.469 - 0.882i$
Analytic cond. $1.07798$
Root an. cond. $1.03825$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.36 − 0.119i)2-s + (−0.861 − 1.50i)3-s + (−0.116 − 0.0204i)4-s + (−0.119 + 2.23i)5-s + (0.997 + 2.15i)6-s + (−2.68 − 1.87i)7-s + (2.80 + 0.752i)8-s + (−1.51 + 2.58i)9-s + (0.430 − 3.03i)10-s + (−1.85 + 5.10i)11-s + (0.0692 + 0.192i)12-s + (0.215 + 2.45i)13-s + (3.44 + 2.88i)14-s + (3.45 − 1.74i)15-s + (−3.52 − 1.28i)16-s + (−3.45 + 0.925i)17-s + ⋯
L(s)  = 1  + (−0.966 − 0.0845i)2-s + (−0.497 − 0.867i)3-s + (−0.0580 − 0.0102i)4-s + (−0.0533 + 0.998i)5-s + (0.407 + 0.880i)6-s + (−1.01 − 0.710i)7-s + (0.992 + 0.265i)8-s + (−0.505 + 0.862i)9-s + (0.136 − 0.960i)10-s + (−0.560 + 1.53i)11-s + (0.0199 + 0.0554i)12-s + (0.0596 + 0.682i)13-s + (0.920 + 0.772i)14-s + (0.892 − 0.450i)15-s + (−0.881 − 0.320i)16-s + (−0.837 + 0.224i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.469 - 0.882i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.469 - 0.882i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(135\)    =    \(3^{3} \cdot 5\)
Sign: $-0.469 - 0.882i$
Analytic conductor: \(1.07798\)
Root analytic conductor: \(1.03825\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{135} (113, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 135,\ (\ :1/2),\ -0.469 - 0.882i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0846385 + 0.140863i\)
\(L(\frac12)\) \(\approx\) \(0.0846385 + 0.140863i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.861 + 1.50i)T \)
5 \( 1 + (0.119 - 2.23i)T \)
good2 \( 1 + (1.36 + 0.119i)T + (1.96 + 0.347i)T^{2} \)
7 \( 1 + (2.68 + 1.87i)T + (2.39 + 6.57i)T^{2} \)
11 \( 1 + (1.85 - 5.10i)T + (-8.42 - 7.07i)T^{2} \)
13 \( 1 + (-0.215 - 2.45i)T + (-12.8 + 2.25i)T^{2} \)
17 \( 1 + (3.45 - 0.925i)T + (14.7 - 8.5i)T^{2} \)
19 \( 1 + (-0.417 + 0.240i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (4.01 + 5.73i)T + (-7.86 + 21.6i)T^{2} \)
29 \( 1 + (-0.0993 + 0.0833i)T + (5.03 - 28.5i)T^{2} \)
31 \( 1 + (-0.509 + 2.88i)T + (-29.1 - 10.6i)T^{2} \)
37 \( 1 + (-1.67 - 6.26i)T + (-32.0 + 18.5i)T^{2} \)
41 \( 1 + (-0.215 + 0.256i)T + (-7.11 - 40.3i)T^{2} \)
43 \( 1 + (2.45 + 5.27i)T + (-27.6 + 32.9i)T^{2} \)
47 \( 1 + (6.80 - 9.71i)T + (-16.0 - 44.1i)T^{2} \)
53 \( 1 + (0.167 - 0.167i)T - 53iT^{2} \)
59 \( 1 + (3.62 - 1.32i)T + (45.1 - 37.9i)T^{2} \)
61 \( 1 + (0.855 + 4.85i)T + (-57.3 + 20.8i)T^{2} \)
67 \( 1 + (-4.25 + 0.372i)T + (65.9 - 11.6i)T^{2} \)
71 \( 1 + (-7.10 - 4.10i)T + (35.5 + 61.4i)T^{2} \)
73 \( 1 + (3.51 - 13.1i)T + (-63.2 - 36.5i)T^{2} \)
79 \( 1 + (-6.44 - 7.68i)T + (-13.7 + 77.7i)T^{2} \)
83 \( 1 + (-0.00128 + 0.0147i)T + (-81.7 - 14.4i)T^{2} \)
89 \( 1 + (2.55 + 4.43i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-3.77 + 1.75i)T + (62.3 - 74.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.44748554850027269906139242784, −12.59413874793310302560569537325, −11.26775661047262932431795901118, −10.32526251524121876256534675736, −9.710986843617434906882705433084, −8.105811161854005635751083915167, −7.10922717710888462637754563913, −6.49575125825363980911639074562, −4.45842657801523749954061518461, −2.20015788709963405912677552833, 0.23588619837239957452139932576, 3.53136545399095718038677124698, 5.12019090023020896473262555264, 6.08443830076744793438663787040, 8.067418668961352930522505155499, 8.933685779377101258502196756266, 9.552395813392142163592891988656, 10.56993201646825437912197519755, 11.66776345488512927159758560385, 12.89951391028696613386019871847

Graph of the $Z$-function along the critical line