Properties

Label 2-135-1.1-c3-0-4
Degree $2$
Conductor $135$
Sign $1$
Analytic cond. $7.96525$
Root an. cond. $2.82227$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.258·2-s − 7.93·4-s − 5·5-s + 14.5·7-s − 4.12·8-s − 1.29·10-s + 49.2·11-s + 72.1·13-s + 3.75·14-s + 62.3·16-s − 118.·17-s + 123.·19-s + 39.6·20-s + 12.7·22-s + 91.4·23-s + 25·25-s + 18.6·26-s − 115.·28-s − 174.·29-s − 46.2·31-s + 49.1·32-s − 30.5·34-s − 72.5·35-s + 154.·37-s + 31.9·38-s + 20.6·40-s + 364.·41-s + ⋯
L(s)  = 1  + 0.0914·2-s − 0.991·4-s − 0.447·5-s + 0.783·7-s − 0.182·8-s − 0.0409·10-s + 1.35·11-s + 1.53·13-s + 0.0716·14-s + 0.974·16-s − 1.68·17-s + 1.48·19-s + 0.443·20-s + 0.123·22-s + 0.829·23-s + 0.200·25-s + 0.140·26-s − 0.777·28-s − 1.11·29-s − 0.268·31-s + 0.271·32-s − 0.154·34-s − 0.350·35-s + 0.688·37-s + 0.136·38-s + 0.0814·40-s + 1.38·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(135\)    =    \(3^{3} \cdot 5\)
Sign: $1$
Analytic conductor: \(7.96525\)
Root analytic conductor: \(2.82227\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 135,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.501753855\)
\(L(\frac12)\) \(\approx\) \(1.501753855\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + 5T \)
good2 \( 1 - 0.258T + 8T^{2} \)
7 \( 1 - 14.5T + 343T^{2} \)
11 \( 1 - 49.2T + 1.33e3T^{2} \)
13 \( 1 - 72.1T + 2.19e3T^{2} \)
17 \( 1 + 118.T + 4.91e3T^{2} \)
19 \( 1 - 123.T + 6.85e3T^{2} \)
23 \( 1 - 91.4T + 1.21e4T^{2} \)
29 \( 1 + 174.T + 2.43e4T^{2} \)
31 \( 1 + 46.2T + 2.97e4T^{2} \)
37 \( 1 - 154.T + 5.06e4T^{2} \)
41 \( 1 - 364.T + 6.89e4T^{2} \)
43 \( 1 - 125.T + 7.95e4T^{2} \)
47 \( 1 - 221.T + 1.03e5T^{2} \)
53 \( 1 - 13.6T + 1.48e5T^{2} \)
59 \( 1 + 239.T + 2.05e5T^{2} \)
61 \( 1 + 54.5T + 2.26e5T^{2} \)
67 \( 1 + 76.0T + 3.00e5T^{2} \)
71 \( 1 + 728.T + 3.57e5T^{2} \)
73 \( 1 + 501.T + 3.89e5T^{2} \)
79 \( 1 - 397.T + 4.93e5T^{2} \)
83 \( 1 - 1.36e3T + 5.71e5T^{2} \)
89 \( 1 + 1.46e3T + 7.04e5T^{2} \)
97 \( 1 - 335.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.93349423508711482565924111672, −11.57429214933778018778833483988, −11.00442867420752540676118643261, −9.233331903990783743734905280824, −8.796772373527519556343236442460, −7.51019089267344473191494560043, −6.02033931098757079642489530346, −4.59291280291824855151204316811, −3.67735542307857052656166233370, −1.13428080229094967369384582001, 1.13428080229094967369384582001, 3.67735542307857052656166233370, 4.59291280291824855151204316811, 6.02033931098757079642489530346, 7.51019089267344473191494560043, 8.796772373527519556343236442460, 9.233331903990783743734905280824, 11.00442867420752540676118643261, 11.57429214933778018778833483988, 12.93349423508711482565924111672

Graph of the $Z$-function along the critical line