Properties

Label 2-1344-56.27-c3-0-91
Degree $2$
Conductor $1344$
Sign $-0.573 - 0.819i$
Analytic cond. $79.2985$
Root an. cond. $8.90497$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 3i·3-s − 12.8·5-s + (−6.32 − 17.4i)7-s − 9·9-s − 25.0·11-s + 64.1·13-s + 38.4i·15-s − 77.4i·17-s − 49.9i·19-s + (−52.2 + 18.9i)21-s − 80.5i·23-s + 39.4·25-s + 27i·27-s − 159. i·29-s − 96.5·31-s + ⋯
L(s)  = 1  − 0.577i·3-s − 1.14·5-s + (−0.341 − 0.939i)7-s − 0.333·9-s − 0.686·11-s + 1.36·13-s + 0.662i·15-s − 1.10i·17-s − 0.603i·19-s + (−0.542 + 0.197i)21-s − 0.730i·23-s + 0.315·25-s + 0.192i·27-s − 1.01i·29-s − 0.559·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.573 - 0.819i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.573 - 0.819i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1344\)    =    \(2^{6} \cdot 3 \cdot 7\)
Sign: $-0.573 - 0.819i$
Analytic conductor: \(79.2985\)
Root analytic conductor: \(8.90497\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1344} (223, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1344,\ (\ :3/2),\ -0.573 - 0.819i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.6079198789\)
\(L(\frac12)\) \(\approx\) \(0.6079198789\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3iT \)
7 \( 1 + (6.32 + 17.4i)T \)
good5 \( 1 + 12.8T + 125T^{2} \)
11 \( 1 + 25.0T + 1.33e3T^{2} \)
13 \( 1 - 64.1T + 2.19e3T^{2} \)
17 \( 1 + 77.4iT - 4.91e3T^{2} \)
19 \( 1 + 49.9iT - 6.85e3T^{2} \)
23 \( 1 + 80.5iT - 1.21e4T^{2} \)
29 \( 1 + 159. iT - 2.43e4T^{2} \)
31 \( 1 + 96.5T + 2.97e4T^{2} \)
37 \( 1 + 274. iT - 5.06e4T^{2} \)
41 \( 1 + 299. iT - 6.89e4T^{2} \)
43 \( 1 - 385.T + 7.95e4T^{2} \)
47 \( 1 + 418.T + 1.03e5T^{2} \)
53 \( 1 + 665. iT - 1.48e5T^{2} \)
59 \( 1 - 445. iT - 2.05e5T^{2} \)
61 \( 1 - 599.T + 2.26e5T^{2} \)
67 \( 1 + 675.T + 3.00e5T^{2} \)
71 \( 1 + 877. iT - 3.57e5T^{2} \)
73 \( 1 - 696. iT - 3.89e5T^{2} \)
79 \( 1 - 1.24e3iT - 4.93e5T^{2} \)
83 \( 1 + 238. iT - 5.71e5T^{2} \)
89 \( 1 - 743. iT - 7.04e5T^{2} \)
97 \( 1 - 1.55e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.512591864636519477469357743534, −7.77854985779622623314133806035, −7.21500722350856912381642820072, −6.46048255547380110812546679208, −5.35946296582097279657708531495, −4.20365993960764201164816772317, −3.56252393914999107457760957147, −2.43381136359881596265094381135, −0.814040568764020112899134334853, −0.19251003687557528203801272174, 1.52964580881445982186614903161, 3.08800688440542811384518475357, 3.63632777637254086160464050399, 4.60007834473215020187677260412, 5.68173074071985907577351719139, 6.26698163486301040574582634006, 7.56182936232505502393644615843, 8.310562583362976621523940232139, 8.773118727757241061451329307839, 9.757138939233557364413197367204

Graph of the $Z$-function along the critical line