Properties

Label 2-1344-56.27-c3-0-15
Degree $2$
Conductor $1344$
Sign $0.0743 - 0.997i$
Analytic cond. $79.2985$
Root an. cond. $8.90497$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 3i·3-s − 3.15·5-s + (6.11 − 17.4i)7-s − 9·9-s + 60.9·11-s − 59.6·13-s + 9.46i·15-s + 21.4i·17-s + 95.5i·19-s + (−52.4 − 18.3i)21-s + 46.3i·23-s − 115.·25-s + 27i·27-s − 107. i·29-s − 94.2·31-s + ⋯
L(s)  = 1  − 0.577i·3-s − 0.282·5-s + (0.329 − 0.944i)7-s − 0.333·9-s + 1.67·11-s − 1.27·13-s + 0.162i·15-s + 0.305i·17-s + 1.15i·19-s + (−0.545 − 0.190i)21-s + 0.419i·23-s − 0.920·25-s + 0.192i·27-s − 0.688i·29-s − 0.546·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0743 - 0.997i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.0743 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1344\)    =    \(2^{6} \cdot 3 \cdot 7\)
Sign: $0.0743 - 0.997i$
Analytic conductor: \(79.2985\)
Root analytic conductor: \(8.90497\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1344} (223, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1344,\ (\ :3/2),\ 0.0743 - 0.997i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.7921683347\)
\(L(\frac12)\) \(\approx\) \(0.7921683347\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3iT \)
7 \( 1 + (-6.11 + 17.4i)T \)
good5 \( 1 + 3.15T + 125T^{2} \)
11 \( 1 - 60.9T + 1.33e3T^{2} \)
13 \( 1 + 59.6T + 2.19e3T^{2} \)
17 \( 1 - 21.4iT - 4.91e3T^{2} \)
19 \( 1 - 95.5iT - 6.85e3T^{2} \)
23 \( 1 - 46.3iT - 1.21e4T^{2} \)
29 \( 1 + 107. iT - 2.43e4T^{2} \)
31 \( 1 + 94.2T + 2.97e4T^{2} \)
37 \( 1 - 131. iT - 5.06e4T^{2} \)
41 \( 1 - 283. iT - 6.89e4T^{2} \)
43 \( 1 + 373.T + 7.95e4T^{2} \)
47 \( 1 + 136.T + 1.03e5T^{2} \)
53 \( 1 + 298. iT - 1.48e5T^{2} \)
59 \( 1 + 468. iT - 2.05e5T^{2} \)
61 \( 1 - 563.T + 2.26e5T^{2} \)
67 \( 1 - 160.T + 3.00e5T^{2} \)
71 \( 1 - 409. iT - 3.57e5T^{2} \)
73 \( 1 - 930. iT - 3.89e5T^{2} \)
79 \( 1 + 442. iT - 4.93e5T^{2} \)
83 \( 1 - 190. iT - 5.71e5T^{2} \)
89 \( 1 - 829. iT - 7.04e5T^{2} \)
97 \( 1 - 1.03e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.691477119418914364827838607449, −8.349902184488642038733955126982, −7.83224678991056823495900943996, −6.96500887190185675904446818382, −6.40132284034961098167976909659, −5.24219897411198883989056510794, −4.15058753552258153595687892499, −3.53271377150611312668474029617, −1.97053309733409771713562776725, −1.14216409651178783716102968511, 0.18717613722922894069032802376, 1.81201797038766078605208219308, 2.86159509726352181471027192803, 3.95863592338336752167510514618, 4.79267368173235882910361401012, 5.55032295697254090626163095384, 6.62504584349036354893519711778, 7.36038498513765627165554646972, 8.483559288427504637045413023943, 9.175006844056722235694323355878

Graph of the $Z$-function along the critical line