Properties

Label 2-1344-1.1-c3-0-45
Degree $2$
Conductor $1344$
Sign $-1$
Analytic cond. $79.2985$
Root an. cond. $8.90497$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 6·5-s − 7·7-s + 9·9-s + 36·11-s − 62·13-s + 18·15-s + 114·17-s − 76·19-s + 21·21-s + 24·23-s − 89·25-s − 27·27-s − 54·29-s + 112·31-s − 108·33-s + 42·35-s + 178·37-s + 186·39-s + 378·41-s − 172·43-s − 54·45-s + 192·47-s + 49·49-s − 342·51-s + 402·53-s − 216·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.536·5-s − 0.377·7-s + 1/3·9-s + 0.986·11-s − 1.32·13-s + 0.309·15-s + 1.62·17-s − 0.917·19-s + 0.218·21-s + 0.217·23-s − 0.711·25-s − 0.192·27-s − 0.345·29-s + 0.648·31-s − 0.569·33-s + 0.202·35-s + 0.790·37-s + 0.763·39-s + 1.43·41-s − 0.609·43-s − 0.178·45-s + 0.595·47-s + 1/7·49-s − 0.939·51-s + 1.04·53-s − 0.529·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1344\)    =    \(2^{6} \cdot 3 \cdot 7\)
Sign: $-1$
Analytic conductor: \(79.2985\)
Root analytic conductor: \(8.90497\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1344,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p T \)
7 \( 1 + p T \)
good5 \( 1 + 6 T + p^{3} T^{2} \)
11 \( 1 - 36 T + p^{3} T^{2} \)
13 \( 1 + 62 T + p^{3} T^{2} \)
17 \( 1 - 114 T + p^{3} T^{2} \)
19 \( 1 + 4 p T + p^{3} T^{2} \)
23 \( 1 - 24 T + p^{3} T^{2} \)
29 \( 1 + 54 T + p^{3} T^{2} \)
31 \( 1 - 112 T + p^{3} T^{2} \)
37 \( 1 - 178 T + p^{3} T^{2} \)
41 \( 1 - 378 T + p^{3} T^{2} \)
43 \( 1 + 4 p T + p^{3} T^{2} \)
47 \( 1 - 192 T + p^{3} T^{2} \)
53 \( 1 - 402 T + p^{3} T^{2} \)
59 \( 1 - 396 T + p^{3} T^{2} \)
61 \( 1 + 254 T + p^{3} T^{2} \)
67 \( 1 + 1012 T + p^{3} T^{2} \)
71 \( 1 + 840 T + p^{3} T^{2} \)
73 \( 1 - 890 T + p^{3} T^{2} \)
79 \( 1 + 80 T + p^{3} T^{2} \)
83 \( 1 + 108 T + p^{3} T^{2} \)
89 \( 1 + 1638 T + p^{3} T^{2} \)
97 \( 1 - 1010 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.939755792339478494688591274786, −7.80427577876441212149525384589, −7.27308987493018330276006130476, −6.31340287693856504644574023534, −5.56961667517351518942981504657, −4.49151689438157141560488936034, −3.77300219946219926365768494190, −2.57341063364908646229312152080, −1.14363493300985782786338519497, 0, 1.14363493300985782786338519497, 2.57341063364908646229312152080, 3.77300219946219926365768494190, 4.49151689438157141560488936034, 5.56961667517351518942981504657, 6.31340287693856504644574023534, 7.27308987493018330276006130476, 7.80427577876441212149525384589, 8.939755792339478494688591274786

Graph of the $Z$-function along the critical line