L(s) = 1 | − 3·3-s − 6·5-s − 7·7-s + 9·9-s + 36·11-s − 62·13-s + 18·15-s + 114·17-s − 76·19-s + 21·21-s + 24·23-s − 89·25-s − 27·27-s − 54·29-s + 112·31-s − 108·33-s + 42·35-s + 178·37-s + 186·39-s + 378·41-s − 172·43-s − 54·45-s + 192·47-s + 49·49-s − 342·51-s + 402·53-s − 216·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.536·5-s − 0.377·7-s + 1/3·9-s + 0.986·11-s − 1.32·13-s + 0.309·15-s + 1.62·17-s − 0.917·19-s + 0.218·21-s + 0.217·23-s − 0.711·25-s − 0.192·27-s − 0.345·29-s + 0.648·31-s − 0.569·33-s + 0.202·35-s + 0.790·37-s + 0.763·39-s + 1.43·41-s − 0.609·43-s − 0.178·45-s + 0.595·47-s + 1/7·49-s − 0.939·51-s + 1.04·53-s − 0.529·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + p T \) |
| 7 | \( 1 + p T \) |
good | 5 | \( 1 + 6 T + p^{3} T^{2} \) |
| 11 | \( 1 - 36 T + p^{3} T^{2} \) |
| 13 | \( 1 + 62 T + p^{3} T^{2} \) |
| 17 | \( 1 - 114 T + p^{3} T^{2} \) |
| 19 | \( 1 + 4 p T + p^{3} T^{2} \) |
| 23 | \( 1 - 24 T + p^{3} T^{2} \) |
| 29 | \( 1 + 54 T + p^{3} T^{2} \) |
| 31 | \( 1 - 112 T + p^{3} T^{2} \) |
| 37 | \( 1 - 178 T + p^{3} T^{2} \) |
| 41 | \( 1 - 378 T + p^{3} T^{2} \) |
| 43 | \( 1 + 4 p T + p^{3} T^{2} \) |
| 47 | \( 1 - 192 T + p^{3} T^{2} \) |
| 53 | \( 1 - 402 T + p^{3} T^{2} \) |
| 59 | \( 1 - 396 T + p^{3} T^{2} \) |
| 61 | \( 1 + 254 T + p^{3} T^{2} \) |
| 67 | \( 1 + 1012 T + p^{3} T^{2} \) |
| 71 | \( 1 + 840 T + p^{3} T^{2} \) |
| 73 | \( 1 - 890 T + p^{3} T^{2} \) |
| 79 | \( 1 + 80 T + p^{3} T^{2} \) |
| 83 | \( 1 + 108 T + p^{3} T^{2} \) |
| 89 | \( 1 + 1638 T + p^{3} T^{2} \) |
| 97 | \( 1 - 1010 T + p^{3} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.939755792339478494688591274786, −7.80427577876441212149525384589, −7.27308987493018330276006130476, −6.31340287693856504644574023534, −5.56961667517351518942981504657, −4.49151689438157141560488936034, −3.77300219946219926365768494190, −2.57341063364908646229312152080, −1.14363493300985782786338519497, 0,
1.14363493300985782786338519497, 2.57341063364908646229312152080, 3.77300219946219926365768494190, 4.49151689438157141560488936034, 5.56961667517351518942981504657, 6.31340287693856504644574023534, 7.27308987493018330276006130476, 7.80427577876441212149525384589, 8.939755792339478494688591274786