Properties

Label 2-1344-1.1-c3-0-19
Degree $2$
Conductor $1344$
Sign $1$
Analytic cond. $79.2985$
Root an. cond. $8.90497$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 6·5-s + 7·7-s + 9·9-s − 36·11-s − 62·13-s − 18·15-s + 114·17-s + 76·19-s + 21·21-s − 24·23-s − 89·25-s + 27·27-s − 54·29-s − 112·31-s − 108·33-s − 42·35-s + 178·37-s − 186·39-s + 378·41-s + 172·43-s − 54·45-s − 192·47-s + 49·49-s + 342·51-s + 402·53-s + 216·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.536·5-s + 0.377·7-s + 1/3·9-s − 0.986·11-s − 1.32·13-s − 0.309·15-s + 1.62·17-s + 0.917·19-s + 0.218·21-s − 0.217·23-s − 0.711·25-s + 0.192·27-s − 0.345·29-s − 0.648·31-s − 0.569·33-s − 0.202·35-s + 0.790·37-s − 0.763·39-s + 1.43·41-s + 0.609·43-s − 0.178·45-s − 0.595·47-s + 1/7·49-s + 0.939·51-s + 1.04·53-s + 0.529·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1344\)    =    \(2^{6} \cdot 3 \cdot 7\)
Sign: $1$
Analytic conductor: \(79.2985\)
Root analytic conductor: \(8.90497\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1344,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.160167978\)
\(L(\frac12)\) \(\approx\) \(2.160167978\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p T \)
7 \( 1 - p T \)
good5 \( 1 + 6 T + p^{3} T^{2} \)
11 \( 1 + 36 T + p^{3} T^{2} \)
13 \( 1 + 62 T + p^{3} T^{2} \)
17 \( 1 - 114 T + p^{3} T^{2} \)
19 \( 1 - 4 p T + p^{3} T^{2} \)
23 \( 1 + 24 T + p^{3} T^{2} \)
29 \( 1 + 54 T + p^{3} T^{2} \)
31 \( 1 + 112 T + p^{3} T^{2} \)
37 \( 1 - 178 T + p^{3} T^{2} \)
41 \( 1 - 378 T + p^{3} T^{2} \)
43 \( 1 - 4 p T + p^{3} T^{2} \)
47 \( 1 + 192 T + p^{3} T^{2} \)
53 \( 1 - 402 T + p^{3} T^{2} \)
59 \( 1 + 396 T + p^{3} T^{2} \)
61 \( 1 + 254 T + p^{3} T^{2} \)
67 \( 1 - 1012 T + p^{3} T^{2} \)
71 \( 1 - 840 T + p^{3} T^{2} \)
73 \( 1 - 890 T + p^{3} T^{2} \)
79 \( 1 - 80 T + p^{3} T^{2} \)
83 \( 1 - 108 T + p^{3} T^{2} \)
89 \( 1 + 1638 T + p^{3} T^{2} \)
97 \( 1 - 1010 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.459161986228085718360889151234, −8.066744689152111430519350880002, −7.77655579038787733494575565297, −7.20467830621980351953848978888, −5.70132038002626292919469950072, −5.06161112421647104886201793207, −3.99647932369199246792330324316, −3.05012282855403358399382246415, −2.14133594036598931656883575836, −0.70446634354166777485363125529, 0.70446634354166777485363125529, 2.14133594036598931656883575836, 3.05012282855403358399382246415, 3.99647932369199246792330324316, 5.06161112421647104886201793207, 5.70132038002626292919469950072, 7.20467830621980351953848978888, 7.77655579038787733494575565297, 8.066744689152111430519350880002, 9.459161986228085718360889151234

Graph of the $Z$-function along the critical line