Properties

Label 2-1344-1.1-c3-0-0
Degree $2$
Conductor $1344$
Sign $1$
Analytic cond. $79.2985$
Root an. cond. $8.90497$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 14·5-s − 7·7-s + 9·9-s − 4·11-s − 54·13-s + 42·15-s − 14·17-s − 92·19-s + 21·21-s − 152·23-s + 71·25-s − 27·27-s + 106·29-s − 144·31-s + 12·33-s + 98·35-s − 158·37-s + 162·39-s − 390·41-s + 508·43-s − 126·45-s − 528·47-s + 49·49-s + 42·51-s − 606·53-s + 56·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.25·5-s − 0.377·7-s + 1/3·9-s − 0.109·11-s − 1.15·13-s + 0.722·15-s − 0.199·17-s − 1.11·19-s + 0.218·21-s − 1.37·23-s + 0.567·25-s − 0.192·27-s + 0.678·29-s − 0.834·31-s + 0.0633·33-s + 0.473·35-s − 0.702·37-s + 0.665·39-s − 1.48·41-s + 1.80·43-s − 0.417·45-s − 1.63·47-s + 1/7·49-s + 0.115·51-s − 1.57·53-s + 0.137·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1344\)    =    \(2^{6} \cdot 3 \cdot 7\)
Sign: $1$
Analytic conductor: \(79.2985\)
Root analytic conductor: \(8.90497\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1344,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.1356968134\)
\(L(\frac12)\) \(\approx\) \(0.1356968134\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p T \)
7 \( 1 + p T \)
good5 \( 1 + 14 T + p^{3} T^{2} \)
11 \( 1 + 4 T + p^{3} T^{2} \)
13 \( 1 + 54 T + p^{3} T^{2} \)
17 \( 1 + 14 T + p^{3} T^{2} \)
19 \( 1 + 92 T + p^{3} T^{2} \)
23 \( 1 + 152 T + p^{3} T^{2} \)
29 \( 1 - 106 T + p^{3} T^{2} \)
31 \( 1 + 144 T + p^{3} T^{2} \)
37 \( 1 + 158 T + p^{3} T^{2} \)
41 \( 1 + 390 T + p^{3} T^{2} \)
43 \( 1 - 508 T + p^{3} T^{2} \)
47 \( 1 + 528 T + p^{3} T^{2} \)
53 \( 1 + 606 T + p^{3} T^{2} \)
59 \( 1 - 364 T + p^{3} T^{2} \)
61 \( 1 + 678 T + p^{3} T^{2} \)
67 \( 1 + 844 T + p^{3} T^{2} \)
71 \( 1 + 8 T + p^{3} T^{2} \)
73 \( 1 + 422 T + p^{3} T^{2} \)
79 \( 1 - 384 T + p^{3} T^{2} \)
83 \( 1 - 548 T + p^{3} T^{2} \)
89 \( 1 - 1194 T + p^{3} T^{2} \)
97 \( 1 + 1502 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.274356999025734105979079708451, −8.256896575706077017681706222399, −7.61954987749541661954000486186, −6.82328277479606856761599159892, −6.01261762254862046317310565707, −4.85175935596790166942318188998, −4.21673743289642480092306547854, −3.23983440643283924619893640575, −1.93605293612074594050757373942, −0.17982517478706399982676311479, 0.17982517478706399982676311479, 1.93605293612074594050757373942, 3.23983440643283924619893640575, 4.21673743289642480092306547854, 4.85175935596790166942318188998, 6.01261762254862046317310565707, 6.82328277479606856761599159892, 7.61954987749541661954000486186, 8.256896575706077017681706222399, 9.274356999025734105979079708451

Graph of the $Z$-function along the critical line