| L(s) = 1 | + (1.20 − 2.09i)2-s + (−0.707 − 1.22i)3-s + (−1.91 − 3.31i)4-s + (−0.5 + 0.866i)5-s − 3.41·6-s + (1.62 + 2.09i)7-s − 4.41·8-s + (0.500 − 0.866i)9-s + (1.20 + 2.09i)10-s + (0.207 + 0.358i)11-s + (−2.70 + 4.68i)12-s − 2.24·13-s + (6.32 − 0.866i)14-s + 1.41·15-s + (−1.49 + 2.59i)16-s + (2 + 3.46i)17-s + ⋯ |
| L(s) = 1 | + (0.853 − 1.47i)2-s + (−0.408 − 0.707i)3-s + (−0.957 − 1.65i)4-s + (−0.223 + 0.387i)5-s − 1.39·6-s + (0.612 + 0.790i)7-s − 1.56·8-s + (0.166 − 0.288i)9-s + (0.381 + 0.661i)10-s + (0.0624 + 0.108i)11-s + (−0.781 + 1.35i)12-s − 0.621·13-s + (1.69 − 0.231i)14-s + 0.365·15-s + (−0.374 + 0.649i)16-s + (0.485 + 0.840i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 133 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.749 + 0.661i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 133 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.749 + 0.661i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.498375 - 1.31809i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.498375 - 1.31809i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 + (-1.62 - 2.09i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| good | 2 | \( 1 + (-1.20 + 2.09i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (0.707 + 1.22i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (0.5 - 0.866i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.207 - 0.358i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 2.24T + 13T^{2} \) |
| 17 | \( 1 + (-2 - 3.46i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-2.79 + 4.83i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 6.58T + 29T^{2} \) |
| 31 | \( 1 + (-3.12 - 5.40i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (4.53 - 7.85i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 3.17T + 41T^{2} \) |
| 43 | \( 1 - 8.07T + 43T^{2} \) |
| 47 | \( 1 + (-2.20 + 3.82i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.12 - 3.67i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (3.41 + 5.91i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (5.91 - 10.2i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.585 + 1.01i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 14.2T + 71T^{2} \) |
| 73 | \( 1 + (7.57 + 13.1i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (0.707 - 1.22i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 9.24T + 83T^{2} \) |
| 89 | \( 1 + (-5.70 + 9.88i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 3.17T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.45152574158557159197484511432, −12.10876596677178615245203444286, −11.18297410856701043647766214653, −10.26904842344517815902100094184, −8.945936579556195760899228822316, −7.29923213739200502502863414631, −5.86351719539445935547290385186, −4.67084015104798149042497717611, −3.11143406574674225220848696824, −1.62349896887612359264536673210,
3.94320343687399321611910970285, 4.82829740307763781934580890757, 5.61032274618736934319138033502, 7.26981639891202818611628110860, 7.80194237915347831012503672633, 9.304598682106100222203772593334, 10.62734739923770138590321754395, 11.79578091488909985602502555359, 13.03417695314521917518795868456, 13.90440495248938702468937245261