Properties

Label 2-1323-63.58-c1-0-10
Degree $2$
Conductor $1323$
Sign $0.104 - 0.994i$
Analytic cond. $10.5642$
Root an. cond. $3.25026$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 0.0683·2-s − 1.99·4-s + (1.33 + 2.30i)5-s + 0.273·8-s + (−0.0910 − 0.157i)10-s + (−0.799 + 1.38i)11-s + (2.62 − 4.54i)13-s + 3.97·16-s + (3.27 + 5.67i)17-s + (0.950 − 1.64i)19-s + (−2.65 − 4.60i)20-s + (0.0546 − 0.0946i)22-s + (−1.53 − 2.65i)23-s + (−1.04 + 1.81i)25-s + (−0.179 + 0.311i)26-s + ⋯
L(s)  = 1  − 0.0483·2-s − 0.997·4-s + (0.595 + 1.03i)5-s + 0.0965·8-s + (−0.0287 − 0.0498i)10-s + (−0.241 + 0.417i)11-s + (0.728 − 1.26i)13-s + 0.992·16-s + (0.793 + 1.37i)17-s + (0.218 − 0.377i)19-s + (−0.594 − 1.02i)20-s + (0.0116 − 0.0201i)22-s + (−0.319 − 0.554i)23-s + (−0.209 + 0.363i)25-s + (−0.0352 + 0.0610i)26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.104 - 0.994i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.104 - 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $0.104 - 0.994i$
Analytic conductor: \(10.5642\)
Root analytic conductor: \(3.25026\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1323} (226, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1323,\ (\ :1/2),\ 0.104 - 0.994i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.310017679\)
\(L(\frac12)\) \(\approx\) \(1.310017679\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + 0.0683T + 2T^{2} \)
5 \( 1 + (-1.33 - 2.30i)T + (-2.5 + 4.33i)T^{2} \)
11 \( 1 + (0.799 - 1.38i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (-2.62 + 4.54i)T + (-6.5 - 11.2i)T^{2} \)
17 \( 1 + (-3.27 - 5.67i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-0.950 + 1.64i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (1.53 + 2.65i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (-3.19 - 5.53i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + 6.71T + 31T^{2} \)
37 \( 1 + (2.11 - 3.66i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (3.69 - 6.40i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (-5.63 - 9.75i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 - 3.79T + 47T^{2} \)
53 \( 1 + (-4.44 - 7.70i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + 10.8T + 59T^{2} \)
61 \( 1 + 2.71T + 61T^{2} \)
67 \( 1 + 3.32T + 67T^{2} \)
71 \( 1 - 12.3T + 71T^{2} \)
73 \( 1 + (-1.09 - 1.90i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 - 0.813T + 79T^{2} \)
83 \( 1 + (3.41 + 5.92i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 + (0.235 - 0.407i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (2.57 + 4.46i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.00722571186677189946782179772, −9.030429803830539390172192863012, −8.203574555022019371292763433584, −7.53888394357503980544341023582, −6.33387451592552979474463060650, −5.74760379030360938551032695523, −4.79109780840530959981665211952, −3.61794322766920731355332085289, −2.87168895159896928500556921410, −1.30672010685751283806872801435, 0.64716259424918804965618352357, 1.84877102031256323329714797264, 3.51384841310972012145443398766, 4.34476892406061073442857384322, 5.37720140180775715984530317192, 5.69083218957057895902512661373, 7.07707299814562353166052175222, 8.035653542939511164995125447452, 8.905041740551434012388261772452, 9.265222711204286734699720594771

Graph of the $Z$-function along the critical line