L(s) = 1 | + (−1.61 + 0.934i)2-s + (0.746 − 1.29i)4-s + (−1.25 + 2.17i)5-s − 0.947i·8-s − 4.68i·10-s + (4.85 − 2.80i)11-s + (0.384 + 0.221i)13-s + (2.37 + 4.11i)16-s − 3.07·17-s + 2.57i·19-s + (1.87 + 3.23i)20-s + (−5.24 + 9.07i)22-s + (−6.83 − 3.94i)23-s + (−0.639 − 1.10i)25-s − 0.829·26-s + ⋯ |
L(s) = 1 | + (−1.14 + 0.660i)2-s + (0.373 − 0.646i)4-s + (−0.560 + 0.970i)5-s − 0.335i·8-s − 1.48i·10-s + (1.46 − 0.845i)11-s + (0.106 + 0.0615i)13-s + (0.594 + 1.02i)16-s − 0.746·17-s + 0.590i·19-s + (0.418 + 0.724i)20-s + (−1.11 + 1.93i)22-s + (−1.42 − 0.822i)23-s + (−0.127 − 0.221i)25-s − 0.162·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.425 + 0.904i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.425 + 0.904i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2810950299\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2810950299\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (1.61 - 0.934i)T + (1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (1.25 - 2.17i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-4.85 + 2.80i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.384 - 0.221i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 3.07T + 17T^{2} \) |
| 19 | \( 1 - 2.57iT - 19T^{2} \) |
| 23 | \( 1 + (6.83 + 3.94i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (2.71 - 1.56i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (9.06 + 5.23i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 1.41T + 37T^{2} \) |
| 41 | \( 1 + (1.64 - 2.85i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.75 + 8.23i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.07 - 1.85i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 4.85iT - 53T^{2} \) |
| 59 | \( 1 + (-3.65 + 6.33i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-7.40 + 4.27i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.934 + 1.61i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 2.95iT - 71T^{2} \) |
| 73 | \( 1 - 8.51iT - 73T^{2} \) |
| 79 | \( 1 + (-0.287 - 0.497i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (4.23 + 7.33i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 7.57T + 89T^{2} \) |
| 97 | \( 1 + (3.22 - 1.86i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.312104133814458441672675588804, −8.590709054898082548009260016411, −7.967244672617813409977481307527, −7.01273587051863914304134782805, −6.58163927300028100203651366861, −5.77026095358443078605682859492, −3.96646334378434305770744613818, −3.57196208637125581971199470703, −1.85035613788236177066016882803, −0.18832841064699854273423524882,
1.23762024260131259977133801227, 2.07824373345934529608794325685, 3.69107952300980879742444631189, 4.50407187918121646150258295078, 5.51550235205368062701133296757, 6.78648560089055377624999747066, 7.62015080858368783593264129710, 8.495150635115685285192011489721, 9.084969430446762378014489232683, 9.539321831677648813205540647928