Properties

Label 2-1323-63.41-c1-0-26
Degree $2$
Conductor $1323$
Sign $0.425 + 0.904i$
Analytic cond. $10.5642$
Root an. cond. $3.25026$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.61 + 0.934i)2-s + (0.746 − 1.29i)4-s + (−1.25 + 2.17i)5-s − 0.947i·8-s − 4.68i·10-s + (4.85 − 2.80i)11-s + (0.384 + 0.221i)13-s + (2.37 + 4.11i)16-s − 3.07·17-s + 2.57i·19-s + (1.87 + 3.23i)20-s + (−5.24 + 9.07i)22-s + (−6.83 − 3.94i)23-s + (−0.639 − 1.10i)25-s − 0.829·26-s + ⋯
L(s)  = 1  + (−1.14 + 0.660i)2-s + (0.373 − 0.646i)4-s + (−0.560 + 0.970i)5-s − 0.335i·8-s − 1.48i·10-s + (1.46 − 0.845i)11-s + (0.106 + 0.0615i)13-s + (0.594 + 1.02i)16-s − 0.746·17-s + 0.590i·19-s + (0.418 + 0.724i)20-s + (−1.11 + 1.93i)22-s + (−1.42 − 0.822i)23-s + (−0.127 − 0.221i)25-s − 0.162·26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.425 + 0.904i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.425 + 0.904i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $0.425 + 0.904i$
Analytic conductor: \(10.5642\)
Root analytic conductor: \(3.25026\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1323} (881, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1323,\ (\ :1/2),\ 0.425 + 0.904i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2810950299\)
\(L(\frac12)\) \(\approx\) \(0.2810950299\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + (1.61 - 0.934i)T + (1 - 1.73i)T^{2} \)
5 \( 1 + (1.25 - 2.17i)T + (-2.5 - 4.33i)T^{2} \)
11 \( 1 + (-4.85 + 2.80i)T + (5.5 - 9.52i)T^{2} \)
13 \( 1 + (-0.384 - 0.221i)T + (6.5 + 11.2i)T^{2} \)
17 \( 1 + 3.07T + 17T^{2} \)
19 \( 1 - 2.57iT - 19T^{2} \)
23 \( 1 + (6.83 + 3.94i)T + (11.5 + 19.9i)T^{2} \)
29 \( 1 + (2.71 - 1.56i)T + (14.5 - 25.1i)T^{2} \)
31 \( 1 + (9.06 + 5.23i)T + (15.5 + 26.8i)T^{2} \)
37 \( 1 + 1.41T + 37T^{2} \)
41 \( 1 + (1.64 - 2.85i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (4.75 + 8.23i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (-1.07 - 1.85i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + 4.85iT - 53T^{2} \)
59 \( 1 + (-3.65 + 6.33i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-7.40 + 4.27i)T + (30.5 - 52.8i)T^{2} \)
67 \( 1 + (-0.934 + 1.61i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + 2.95iT - 71T^{2} \)
73 \( 1 - 8.51iT - 73T^{2} \)
79 \( 1 + (-0.287 - 0.497i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (4.23 + 7.33i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 - 7.57T + 89T^{2} \)
97 \( 1 + (3.22 - 1.86i)T + (48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.312104133814458441672675588804, −8.590709054898082548009260016411, −7.967244672617813409977481307527, −7.01273587051863914304134782805, −6.58163927300028100203651366861, −5.77026095358443078605682859492, −3.96646334378434305770744613818, −3.57196208637125581971199470703, −1.85035613788236177066016882803, −0.18832841064699854273423524882, 1.23762024260131259977133801227, 2.07824373345934529608794325685, 3.69107952300980879742444631189, 4.50407187918121646150258295078, 5.51550235205368062701133296757, 6.78648560089055377624999747066, 7.62015080858368783593264129710, 8.495150635115685285192011489721, 9.084969430446762378014489232683, 9.539321831677648813205540647928

Graph of the $Z$-function along the critical line