Properties

Label 2-1323-63.41-c1-0-18
Degree $2$
Conductor $1323$
Sign $0.970 - 0.240i$
Analytic cond. $10.5642$
Root an. cond. $3.25026$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (1.28 − 0.742i)2-s + (0.101 − 0.176i)4-s + (−0.154 + 0.267i)5-s + 2.66i·8-s + 0.457i·10-s + (2.73 − 1.58i)11-s + (−3.00 − 1.73i)13-s + (2.18 + 3.78i)16-s + 4.88·17-s + 5.34i·19-s + (0.0314 + 0.0544i)20-s + (2.34 − 4.06i)22-s + (5.17 + 2.98i)23-s + (2.45 + 4.24i)25-s − 5.14·26-s + ⋯
L(s)  = 1  + (0.909 − 0.524i)2-s + (0.0509 − 0.0882i)4-s + (−0.0689 + 0.119i)5-s + 0.942i·8-s + 0.144i·10-s + (0.825 − 0.476i)11-s + (−0.833 − 0.481i)13-s + (0.545 + 0.945i)16-s + 1.18·17-s + 1.22i·19-s + (0.00702 + 0.0121i)20-s + (0.500 − 0.866i)22-s + (1.07 + 0.622i)23-s + (0.490 + 0.849i)25-s − 1.00·26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.970 - 0.240i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.970 - 0.240i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $0.970 - 0.240i$
Analytic conductor: \(10.5642\)
Root analytic conductor: \(3.25026\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1323} (881, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1323,\ (\ :1/2),\ 0.970 - 0.240i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.613338733\)
\(L(\frac12)\) \(\approx\) \(2.613338733\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + (-1.28 + 0.742i)T + (1 - 1.73i)T^{2} \)
5 \( 1 + (0.154 - 0.267i)T + (-2.5 - 4.33i)T^{2} \)
11 \( 1 + (-2.73 + 1.58i)T + (5.5 - 9.52i)T^{2} \)
13 \( 1 + (3.00 + 1.73i)T + (6.5 + 11.2i)T^{2} \)
17 \( 1 - 4.88T + 17T^{2} \)
19 \( 1 - 5.34iT - 19T^{2} \)
23 \( 1 + (-5.17 - 2.98i)T + (11.5 + 19.9i)T^{2} \)
29 \( 1 + (2.70 - 1.56i)T + (14.5 - 25.1i)T^{2} \)
31 \( 1 + (6.51 + 3.76i)T + (15.5 + 26.8i)T^{2} \)
37 \( 1 - 11.8T + 37T^{2} \)
41 \( 1 + (-2.58 + 4.48i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (-2.75 - 4.76i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (-4.23 - 7.33i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + 0.0855iT - 53T^{2} \)
59 \( 1 + (1.04 - 1.80i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (4.69 - 2.71i)T + (30.5 - 52.8i)T^{2} \)
67 \( 1 + (-0.0554 + 0.0959i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + 7.78iT - 71T^{2} \)
73 \( 1 - 9.61iT - 73T^{2} \)
79 \( 1 + (2.56 + 4.44i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (4.42 + 7.66i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 - 1.87T + 89T^{2} \)
97 \( 1 + (-10.9 + 6.34i)T + (48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.633023022529432590691017880664, −9.017146614779151713420928036818, −7.82228353066982609290607603270, −7.41209512104664298835978758247, −5.91069743767161976013909405447, −5.47750408209925692512809595496, −4.36045907401379233901994730000, −3.51627263972537898981684579374, −2.83456219912169189073386561951, −1.39566569036879101433603460832, 0.931759569615190447775808498419, 2.59185548841430274959968205643, 3.81551926352206751262562780376, 4.64135385711149455635558743076, 5.23475348444713075202057651274, 6.29553828879121524241430961906, 6.97731735877839983029957288515, 7.61682765649367752812443575388, 8.991488300668847225241725606285, 9.455113244435777043000276231236

Graph of the $Z$-function along the critical line