Properties

Label 2-1323-63.20-c1-0-25
Degree $2$
Conductor $1323$
Sign $-0.940 - 0.338i$
Analytic cond. $10.5642$
Root an. cond. $3.25026$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.80 − 1.04i)2-s + (1.17 + 2.03i)4-s + (−1.65 − 2.86i)5-s − 0.717i·8-s + 6.88i·10-s + (−2.30 − 1.33i)11-s + (2.11 − 1.21i)13-s + (1.59 − 2.76i)16-s + 7.18·17-s − 4.90i·19-s + (3.87 − 6.70i)20-s + (2.77 + 4.80i)22-s + (4.32 − 2.49i)23-s + (−2.96 + 5.12i)25-s − 5.08·26-s + ⋯
L(s)  = 1  + (−1.27 − 0.736i)2-s + (0.586 + 1.01i)4-s + (−0.738 − 1.27i)5-s − 0.253i·8-s + 2.17i·10-s + (−0.694 − 0.401i)11-s + (0.585 − 0.338i)13-s + (0.399 − 0.691i)16-s + 1.74·17-s − 1.12i·19-s + (0.866 − 1.50i)20-s + (0.591 + 1.02i)22-s + (0.901 − 0.520i)23-s + (−0.592 + 1.02i)25-s − 0.997·26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.940 - 0.338i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.940 - 0.338i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $-0.940 - 0.338i$
Analytic conductor: \(10.5642\)
Root analytic conductor: \(3.25026\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1323} (440, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1323,\ (\ :1/2),\ -0.940 - 0.338i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5324675804\)
\(L(\frac12)\) \(\approx\) \(0.5324675804\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + (1.80 + 1.04i)T + (1 + 1.73i)T^{2} \)
5 \( 1 + (1.65 + 2.86i)T + (-2.5 + 4.33i)T^{2} \)
11 \( 1 + (2.30 + 1.33i)T + (5.5 + 9.52i)T^{2} \)
13 \( 1 + (-2.11 + 1.21i)T + (6.5 - 11.2i)T^{2} \)
17 \( 1 - 7.18T + 17T^{2} \)
19 \( 1 + 4.90iT - 19T^{2} \)
23 \( 1 + (-4.32 + 2.49i)T + (11.5 - 19.9i)T^{2} \)
29 \( 1 + (5.50 + 3.17i)T + (14.5 + 25.1i)T^{2} \)
31 \( 1 + (-2.30 + 1.33i)T + (15.5 - 26.8i)T^{2} \)
37 \( 1 + 1.68T + 37T^{2} \)
41 \( 1 + (0.553 + 0.958i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (-2.93 + 5.08i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (2.44 - 4.22i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + 10.3iT - 53T^{2} \)
59 \( 1 + (-2.56 - 4.44i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-4.44 - 2.56i)T + (30.5 + 52.8i)T^{2} \)
67 \( 1 + (4.16 + 7.21i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 - 2.07iT - 71T^{2} \)
73 \( 1 - 8.01iT - 73T^{2} \)
79 \( 1 + (2.50 - 4.33i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + (1.04 - 1.80i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 + 1.08T + 89T^{2} \)
97 \( 1 + (9.47 + 5.46i)T + (48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.138719812859900186206908474642, −8.441930979765041758202299568285, −8.017712467625516440405421094089, −7.22465023415221602314504120133, −5.62467661700948038812511416423, −4.98751461389180809903541223028, −3.70698049052329629971539255783, −2.68327093233402812418523087982, −1.18424278584007977309694124860, −0.42039564784248118229084659792, 1.41205870081321018370630389341, 3.09115982348843135523112334565, 3.82213010401676098210051428520, 5.42407012265576420648501171401, 6.29871035146535229127384268059, 7.19558427216369764918918820402, 7.62506737983026908255406278987, 8.203591744589048323539840436344, 9.229673740350648614161150526696, 10.06120761564399335675768598306

Graph of the $Z$-function along the critical line