L(s) = 1 | + (−1.80 − 1.04i)2-s + (1.17 + 2.03i)4-s + (1.65 + 2.86i)5-s − 0.717i·8-s − 6.88i·10-s + (−2.30 − 1.33i)11-s + (−2.11 + 1.21i)13-s + (1.59 − 2.76i)16-s − 7.18·17-s + 4.90i·19-s + (−3.87 + 6.70i)20-s + (2.77 + 4.80i)22-s + (4.32 − 2.49i)23-s + (−2.96 + 5.12i)25-s + 5.08·26-s + ⋯ |
L(s) = 1 | + (−1.27 − 0.736i)2-s + (0.586 + 1.01i)4-s + (0.738 + 1.27i)5-s − 0.253i·8-s − 2.17i·10-s + (−0.694 − 0.401i)11-s + (−0.585 + 0.338i)13-s + (0.399 − 0.691i)16-s − 1.74·17-s + 1.12i·19-s + (−0.866 + 1.50i)20-s + (0.591 + 1.02i)22-s + (0.901 − 0.520i)23-s + (−0.592 + 1.02i)25-s + 0.997·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 - 0.0311i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 - 0.0311i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.009462952453\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.009462952453\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (1.80 + 1.04i)T + (1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (-1.65 - 2.86i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (2.30 + 1.33i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (2.11 - 1.21i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 7.18T + 17T^{2} \) |
| 19 | \( 1 - 4.90iT - 19T^{2} \) |
| 23 | \( 1 + (-4.32 + 2.49i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (5.50 + 3.17i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (2.30 - 1.33i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 1.68T + 37T^{2} \) |
| 41 | \( 1 + (-0.553 - 0.958i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.93 + 5.08i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-2.44 + 4.22i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 10.3iT - 53T^{2} \) |
| 59 | \( 1 + (2.56 + 4.44i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4.44 + 2.56i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (4.16 + 7.21i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 2.07iT - 71T^{2} \) |
| 73 | \( 1 + 8.01iT - 73T^{2} \) |
| 79 | \( 1 + (2.50 - 4.33i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-1.04 + 1.80i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 1.08T + 89T^{2} \) |
| 97 | \( 1 + (-9.47 - 5.46i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.359393027279586574670590678667, −8.688002747234000358107444366604, −7.71538381978128346455944074566, −6.97215450159192683683991085092, −6.13150237321374550217229269756, −5.05554743191158706590785467283, −3.52060285533209208798065636595, −2.45556501791949226692508881603, −1.96648270748726042445413042259, −0.00589164195832252731494637731,
1.33643750900251354436440273208, 2.53198644977878426417449855704, 4.41241005241293276897593323442, 5.17394172039647490654602645329, 6.02171702483192308368103076643, 7.10475448713415517119271285216, 7.59675118774613298121149984751, 8.748801608543519406042264787114, 9.061030327933666405836206882993, 9.579828843590600014865025006141