Properties

Label 2-1323-63.16-c1-0-29
Degree $2$
Conductor $1323$
Sign $0.483 - 0.875i$
Analytic cond. $10.5642$
Root an. cond. $3.25026$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.849 + 1.47i)2-s + (−0.444 + 0.769i)4-s + 3.58·5-s + 1.88·8-s + (3.04 + 5.28i)10-s + 2.81·11-s + (−0.5 − 0.866i)13-s + (2.49 + 4.31i)16-s + (−2.05 − 3.56i)17-s + (0.444 − 0.769i)19-s + (−1.59 + 2.76i)20-s + (2.38 + 4.13i)22-s − 5.87·23-s + 7.87·25-s + (0.849 − 1.47i)26-s + ⋯
L(s)  = 1  + (0.600 + 1.04i)2-s + (−0.222 + 0.384i)4-s + 1.60·5-s + 0.667·8-s + (0.964 + 1.67i)10-s + 0.847·11-s + (−0.138 − 0.240i)13-s + (0.623 + 1.07i)16-s + (−0.498 − 0.863i)17-s + (0.101 − 0.176i)19-s + (−0.356 + 0.617i)20-s + (0.509 + 0.882i)22-s − 1.22·23-s + 1.57·25-s + (0.166 − 0.288i)26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.483 - 0.875i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.483 - 0.875i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $0.483 - 0.875i$
Analytic conductor: \(10.5642\)
Root analytic conductor: \(3.25026\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1323} (667, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1323,\ (\ :1/2),\ 0.483 - 0.875i)\)

Particular Values

\(L(1)\) \(\approx\) \(3.382105609\)
\(L(\frac12)\) \(\approx\) \(3.382105609\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + (-0.849 - 1.47i)T + (-1 + 1.73i)T^{2} \)
5 \( 1 - 3.58T + 5T^{2} \)
11 \( 1 - 2.81T + 11T^{2} \)
13 \( 1 + (0.5 + 0.866i)T + (-6.5 + 11.2i)T^{2} \)
17 \( 1 + (2.05 + 3.56i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-0.444 + 0.769i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + 5.87T + 23T^{2} \)
29 \( 1 + (0.849 - 1.47i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + (-3.49 + 6.05i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (2.38 - 4.12i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (2.70 + 4.68i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (2.60 - 4.51i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (1.33 + 2.30i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (0.0618 + 0.107i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (4.43 - 7.68i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (1.93 + 3.35i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (6.15 - 10.6i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 - 2.87T + 71T^{2} \)
73 \( 1 + (-5.32 - 9.21i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (-3.54 - 6.13i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (2.05 - 3.56i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 + (-4.80 + 8.32i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (3.66 - 6.34i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.759644577233061328092496140932, −8.970638763346473556647727234817, −7.973334426761332139381436164271, −6.92410108986548409251758258539, −6.40792893668886066305874396497, −5.70393266596485581068464356199, −5.01947013554723724510571920205, −4.05400179613166386291722245731, −2.53094977480918447898123170528, −1.46443101212424253901560924938, 1.57043525909738137125339212538, 2.05049902883530068989434910254, 3.23169038142805804764879053256, 4.20996601225204761944537345202, 5.11992526883667907070194263685, 6.11413428655543395468411104979, 6.70735308575507655619433121372, 7.976085708711794772436819750965, 9.011510152914654499332948338713, 9.738894413902703581715689393358

Graph of the $Z$-function along the critical line