L(s) = 1 | + (−1.19 − 2.06i)2-s + (−1.84 + 3.20i)4-s − 2.92·5-s + 4.05·8-s + (3.48 + 6.03i)10-s + 1.35·11-s + (0.733 + 1.26i)13-s + (−1.13 − 1.96i)16-s + (1.65 + 2.86i)17-s + (1.10 − 1.91i)19-s + (5.39 − 9.35i)20-s + (−1.61 − 2.79i)22-s − 2.62·23-s + 3.53·25-s + (1.74 − 3.03i)26-s + ⋯ |
L(s) = 1 | + (−0.843 − 1.46i)2-s + (−0.924 + 1.60i)4-s − 1.30·5-s + 1.43·8-s + (1.10 + 1.90i)10-s + 0.408·11-s + (0.203 + 0.352i)13-s + (−0.284 − 0.492i)16-s + (0.401 + 0.695i)17-s + (0.253 − 0.438i)19-s + (1.20 − 2.09i)20-s + (−0.344 − 0.596i)22-s − 0.548·23-s + 0.706·25-s + (0.343 − 0.594i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 + 0.0674i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.997 + 0.0674i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4825244007\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4825244007\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (1.19 + 2.06i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + 2.92T + 5T^{2} \) |
| 11 | \( 1 - 1.35T + 11T^{2} \) |
| 13 | \( 1 + (-0.733 - 1.26i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.65 - 2.86i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.10 + 1.91i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 2.62T + 23T^{2} \) |
| 29 | \( 1 + (0.521 - 0.903i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.63 + 2.83i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-5.43 + 9.41i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (0.904 + 1.56i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.17 - 3.76i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (1.98 + 3.44i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-3.22 - 5.59i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-6.10 + 10.5i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.279 - 0.484i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (6.40 - 11.0i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 12.9T + 71T^{2} \) |
| 73 | \( 1 + (5.22 + 9.05i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (0.383 + 0.664i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (0.983 - 1.70i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-3.20 + 5.54i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.14 + 7.17i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.320704896004490219028488364700, −8.589996840756774052350721528809, −7.943809767788644015392521607041, −7.18548707774364265672435317836, −5.90500289442626579986568664418, −4.32861742693188400581514890494, −3.84778249562136170793697572474, −2.90868165802798821338704216680, −1.64947092608875500987255650353, −0.35361142095204724433957693583,
1.00448553112002162110624728045, 3.16188406493983021317666180037, 4.26382929158914167913569188511, 5.22197559563632189717480746330, 6.17283477903320150785475211445, 6.96900512724098688012010484894, 7.72488364282575550084749822585, 8.151659787141722870449335884760, 8.899693327800512358111724624059, 9.782626446500782347380772666306