Properties

Label 2-1323-21.20-c1-0-47
Degree $2$
Conductor $1323$
Sign $-0.755 + 0.654i$
Analytic cond. $10.5642$
Root an. cond. $3.25026$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 1.83i·2-s − 1.36·4-s + 3.80·5-s − 1.16i·8-s − 6.98i·10-s + 1.16i·11-s − 5.54i·13-s − 4.86·16-s − 3.17·17-s + 0.631i·19-s − 5.19·20-s + 2.13·22-s + 1.76i·23-s + 9.50·25-s − 10.1·26-s + ⋯
L(s)  = 1  − 1.29i·2-s − 0.682·4-s + 1.70·5-s − 0.412i·8-s − 2.20i·10-s + 0.351i·11-s − 1.53i·13-s − 1.21·16-s − 0.770·17-s + 0.144i·19-s − 1.16·20-s + 0.455·22-s + 0.367i·23-s + 1.90·25-s − 1.99·26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.755 + 0.654i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.755 + 0.654i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $-0.755 + 0.654i$
Analytic conductor: \(10.5642\)
Root analytic conductor: \(3.25026\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1323} (1322, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1323,\ (\ :1/2),\ -0.755 + 0.654i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.237734705\)
\(L(\frac12)\) \(\approx\) \(2.237734705\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + 1.83iT - 2T^{2} \)
5 \( 1 - 3.80T + 5T^{2} \)
11 \( 1 - 1.16iT - 11T^{2} \)
13 \( 1 + 5.54iT - 13T^{2} \)
17 \( 1 + 3.17T + 17T^{2} \)
19 \( 1 - 0.631iT - 19T^{2} \)
23 \( 1 - 1.76iT - 23T^{2} \)
29 \( 1 + 4.83iT - 29T^{2} \)
31 \( 1 + 4.27iT - 31T^{2} \)
37 \( 1 - 4.23T + 37T^{2} \)
41 \( 1 + 4.56T + 41T^{2} \)
43 \( 1 - 7.23T + 43T^{2} \)
47 \( 1 - 2.54T + 47T^{2} \)
53 \( 1 - 0.0724iT - 53T^{2} \)
59 \( 1 - 6.98T + 59T^{2} \)
61 \( 1 + 8.08iT - 61T^{2} \)
67 \( 1 - 5.09T + 67T^{2} \)
71 \( 1 - 4.76iT - 71T^{2} \)
73 \( 1 - 5.59iT - 73T^{2} \)
79 \( 1 - 17.0T + 79T^{2} \)
83 \( 1 + 10.1T + 83T^{2} \)
89 \( 1 + 11.5T + 89T^{2} \)
97 \( 1 + 0.688iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.708980543532541127457833935808, −8.952337484452610383597414382872, −7.81861886299112426922219712856, −6.65876646497709966703490792121, −5.88639500562803303649008150851, −5.05530167084641579061582530400, −3.86301254059275621503379818004, −2.65030383181059154347683321725, −2.15610915989791104181754962439, −0.934795940253944109852513375695, 1.70855010363566302671780848008, 2.61452226453338698656337230744, 4.36896309234603504337592605332, 5.23051344352144488835563741876, 5.97285653255529635637238431961, 6.66788759040339175291874035353, 7.08172527582846547787978568363, 8.446686605123535551425038440022, 9.008026742839384467966436103483, 9.572944999474158315747552491620

Graph of the $Z$-function along the critical line