L(s) = 1 | + 2.49i·2-s − 4.20·4-s − 1.23·5-s − 5.49i·8-s − 3.07i·10-s + 5.49i·11-s + 2.96i·13-s + 5.26·16-s − 4.31·17-s − 5.55i·19-s + 5.19·20-s − 13.6·22-s + 1.63i·23-s − 3.47·25-s − 7.39·26-s + ⋯ |
L(s) = 1 | + 1.76i·2-s − 2.10·4-s − 0.552·5-s − 1.94i·8-s − 0.973i·10-s + 1.65i·11-s + 0.823i·13-s + 1.31·16-s − 1.04·17-s − 1.27i·19-s + 1.16·20-s − 2.91·22-s + 0.340i·23-s − 0.694·25-s − 1.44·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.755 + 0.654i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.755 + 0.654i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.1294094124\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1294094124\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 - 2.49iT - 2T^{2} \) |
| 5 | \( 1 + 1.23T + 5T^{2} \) |
| 11 | \( 1 - 5.49iT - 11T^{2} \) |
| 13 | \( 1 - 2.96iT - 13T^{2} \) |
| 17 | \( 1 + 4.31T + 17T^{2} \) |
| 19 | \( 1 + 5.55iT - 19T^{2} \) |
| 23 | \( 1 - 1.63iT - 23T^{2} \) |
| 29 | \( 1 + 0.509iT - 29T^{2} \) |
| 31 | \( 1 + 8.13iT - 31T^{2} \) |
| 37 | \( 1 + 3.06T + 37T^{2} \) |
| 41 | \( 1 + 0.354T + 41T^{2} \) |
| 43 | \( 1 + 0.0637T + 43T^{2} \) |
| 47 | \( 1 - 9.86T + 47T^{2} \) |
| 53 | \( 1 + 4.12iT - 53T^{2} \) |
| 59 | \( 1 - 3.07T + 59T^{2} \) |
| 61 | \( 1 + 6.89iT - 61T^{2} \) |
| 67 | \( 1 + 12.3T + 67T^{2} \) |
| 71 | \( 1 - 4.63iT - 71T^{2} \) |
| 73 | \( 1 - 7.03iT - 73T^{2} \) |
| 79 | \( 1 + 0.331T + 79T^{2} \) |
| 83 | \( 1 + 7.39T + 83T^{2} \) |
| 89 | \( 1 + 3.43T + 89T^{2} \) |
| 97 | \( 1 + 4.45iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.850107141843596427634615996840, −9.275486050109314900434343632453, −8.570665028208299758040986248169, −7.58519162291977704806306462969, −7.12380577919762560523672672752, −6.52642450875808572746954942078, −5.45270256414251427182906175857, −4.45161663798624276618680495695, −4.16762964364103138011385264114, −2.20951611826878483646300072927,
0.05721754742115903492735777805, 1.29686330435230562645981325753, 2.66258477719944300686322350989, 3.46829171252771643150077494416, 4.11645327309431607832105545600, 5.26794942651048475936293547611, 6.18762081163272887143016859156, 7.61379496643997599084050212438, 8.588488792841782326215823666477, 8.865867864280361779819361555282