Properties

Label 2-1323-1.1-c3-0-89
Degree $2$
Conductor $1323$
Sign $-1$
Analytic cond. $78.0595$
Root an. cond. $8.83513$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.46·2-s + 3.98·4-s − 6.55·5-s + 13.9·8-s + 22.6·10-s + 2.29·11-s + 28.6·13-s − 79.9·16-s + 46.6·17-s − 67.5·19-s − 26.0·20-s − 7.94·22-s − 30.1·23-s − 82.0·25-s − 99.1·26-s + 24.0·29-s − 193.·31-s + 165.·32-s − 161.·34-s + 208.·37-s + 233.·38-s − 91.2·40-s + 234.·41-s + 46.0·43-s + 9.13·44-s + 104.·46-s − 194.·47-s + ⋯
L(s)  = 1  − 1.22·2-s + 0.497·4-s − 0.586·5-s + 0.614·8-s + 0.717·10-s + 0.0628·11-s + 0.610·13-s − 1.24·16-s + 0.665·17-s − 0.815·19-s − 0.291·20-s − 0.0769·22-s − 0.273·23-s − 0.656·25-s − 0.747·26-s + 0.154·29-s − 1.12·31-s + 0.914·32-s − 0.814·34-s + 0.927·37-s + 0.997·38-s − 0.360·40-s + 0.892·41-s + 0.163·43-s + 0.0312·44-s + 0.334·46-s − 0.602·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(78.0595\)
Root analytic conductor: \(8.83513\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1323,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + 3.46T + 8T^{2} \)
5 \( 1 + 6.55T + 125T^{2} \)
11 \( 1 - 2.29T + 1.33e3T^{2} \)
13 \( 1 - 28.6T + 2.19e3T^{2} \)
17 \( 1 - 46.6T + 4.91e3T^{2} \)
19 \( 1 + 67.5T + 6.85e3T^{2} \)
23 \( 1 + 30.1T + 1.21e4T^{2} \)
29 \( 1 - 24.0T + 2.43e4T^{2} \)
31 \( 1 + 193.T + 2.97e4T^{2} \)
37 \( 1 - 208.T + 5.06e4T^{2} \)
41 \( 1 - 234.T + 6.89e4T^{2} \)
43 \( 1 - 46.0T + 7.95e4T^{2} \)
47 \( 1 + 194.T + 1.03e5T^{2} \)
53 \( 1 - 221.T + 1.48e5T^{2} \)
59 \( 1 - 710.T + 2.05e5T^{2} \)
61 \( 1 + 634.T + 2.26e5T^{2} \)
67 \( 1 - 269.T + 3.00e5T^{2} \)
71 \( 1 + 234.T + 3.57e5T^{2} \)
73 \( 1 - 213.T + 3.89e5T^{2} \)
79 \( 1 - 242.T + 4.93e5T^{2} \)
83 \( 1 - 1.33e3T + 5.71e5T^{2} \)
89 \( 1 + 1.10e3T + 7.04e5T^{2} \)
97 \( 1 + 1.13e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.854742821251230214776135881584, −8.064904567927253526264905021235, −7.61318560563680426211564377100, −6.64439996145811559005957628408, −5.64476453378054794561904095718, −4.41464236453232697061142053021, −3.64848649802183551090742946675, −2.19263456103118420789672703579, −1.05807427934557369498020555089, 0, 1.05807427934557369498020555089, 2.19263456103118420789672703579, 3.64848649802183551090742946675, 4.41464236453232697061142053021, 5.64476453378054794561904095718, 6.64439996145811559005957628408, 7.61318560563680426211564377100, 8.064904567927253526264905021235, 8.854742821251230214776135881584

Graph of the $Z$-function along the critical line