L(s) = 1 | − 3.62·2-s + 5.17·4-s + 4.84·5-s + 10.2·8-s − 17.5·10-s − 20.1·11-s + 72.2·13-s − 78.6·16-s + 132.·17-s + 76.9·19-s + 25.0·20-s + 73.0·22-s − 22.4·23-s − 101.·25-s − 262.·26-s + 193.·29-s + 89.7·31-s + 203.·32-s − 480.·34-s + 47.9·37-s − 279.·38-s + 49.6·40-s + 3.41·41-s − 168.·43-s − 104.·44-s + 81.5·46-s + 163.·47-s + ⋯ |
L(s) = 1 | − 1.28·2-s + 0.646·4-s + 0.433·5-s + 0.453·8-s − 0.555·10-s − 0.551·11-s + 1.54·13-s − 1.22·16-s + 1.88·17-s + 0.928·19-s + 0.280·20-s + 0.708·22-s − 0.203·23-s − 0.812·25-s − 1.97·26-s + 1.23·29-s + 0.520·31-s + 1.12·32-s − 2.42·34-s + 0.212·37-s − 1.19·38-s + 0.196·40-s + 0.0130·41-s − 0.597·43-s − 0.356·44-s + 0.261·46-s + 0.506·47-s + ⋯ |
Λ(s)=(=(1323s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1323s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.369241540 |
L(21) |
≈ |
1.369241540 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1+3.62T+8T2 |
| 5 | 1−4.84T+125T2 |
| 11 | 1+20.1T+1.33e3T2 |
| 13 | 1−72.2T+2.19e3T2 |
| 17 | 1−132.T+4.91e3T2 |
| 19 | 1−76.9T+6.85e3T2 |
| 23 | 1+22.4T+1.21e4T2 |
| 29 | 1−193.T+2.43e4T2 |
| 31 | 1−89.7T+2.97e4T2 |
| 37 | 1−47.9T+5.06e4T2 |
| 41 | 1−3.41T+6.89e4T2 |
| 43 | 1+168.T+7.95e4T2 |
| 47 | 1−163.T+1.03e5T2 |
| 53 | 1−337.T+1.48e5T2 |
| 59 | 1−517.T+2.05e5T2 |
| 61 | 1−424.T+2.26e5T2 |
| 67 | 1+978.T+3.00e5T2 |
| 71 | 1+40.4T+3.57e5T2 |
| 73 | 1−482.T+3.89e5T2 |
| 79 | 1+1.07e3T+4.93e5T2 |
| 83 | 1+811.T+5.71e5T2 |
| 89 | 1−997.T+7.04e5T2 |
| 97 | 1+1.45e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.290549771325094497698059541275, −8.389277054240070183558111763720, −7.962356323089872201793313561246, −7.08466907486733435823596208125, −6.00685415061052921525557230452, −5.29105513808097321887272781681, −3.97215174945320474629585742124, −2.85947737409268625486610409180, −1.49022794145752444118028556562, −0.801622842332916639903454678476,
0.801622842332916639903454678476, 1.49022794145752444118028556562, 2.85947737409268625486610409180, 3.97215174945320474629585742124, 5.29105513808097321887272781681, 6.00685415061052921525557230452, 7.08466907486733435823596208125, 7.962356323089872201793313561246, 8.389277054240070183558111763720, 9.290549771325094497698059541275