Properties

Label 2-1323-1.1-c3-0-49
Degree $2$
Conductor $1323$
Sign $1$
Analytic cond. $78.0595$
Root an. cond. $8.83513$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.49·2-s + 4.19·4-s − 7.87·5-s − 13.2·8-s − 27.5·10-s + 54.0·11-s − 48.9·13-s − 79.9·16-s + 96.9·17-s − 142.·19-s − 33.0·20-s + 188.·22-s + 103.·23-s − 62.9·25-s − 170.·26-s + 24.5·29-s + 187.·31-s − 172.·32-s + 338.·34-s + 146.·37-s − 497.·38-s + 104.·40-s + 314.·41-s + 173.·43-s + 226.·44-s + 362.·46-s − 259.·47-s + ⋯
L(s)  = 1  + 1.23·2-s + 0.524·4-s − 0.704·5-s − 0.587·8-s − 0.869·10-s + 1.48·11-s − 1.04·13-s − 1.24·16-s + 1.38·17-s − 1.71·19-s − 0.369·20-s + 1.82·22-s + 0.940·23-s − 0.503·25-s − 1.28·26-s + 0.157·29-s + 1.08·31-s − 0.955·32-s + 1.70·34-s + 0.651·37-s − 2.12·38-s + 0.413·40-s + 1.19·41-s + 0.614·43-s + 0.776·44-s + 1.16·46-s − 0.804·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(78.0595\)
Root analytic conductor: \(8.83513\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1323,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.193931665\)
\(L(\frac12)\) \(\approx\) \(3.193931665\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 - 3.49T + 8T^{2} \)
5 \( 1 + 7.87T + 125T^{2} \)
11 \( 1 - 54.0T + 1.33e3T^{2} \)
13 \( 1 + 48.9T + 2.19e3T^{2} \)
17 \( 1 - 96.9T + 4.91e3T^{2} \)
19 \( 1 + 142.T + 6.85e3T^{2} \)
23 \( 1 - 103.T + 1.21e4T^{2} \)
29 \( 1 - 24.5T + 2.43e4T^{2} \)
31 \( 1 - 187.T + 2.97e4T^{2} \)
37 \( 1 - 146.T + 5.06e4T^{2} \)
41 \( 1 - 314.T + 6.89e4T^{2} \)
43 \( 1 - 173.T + 7.95e4T^{2} \)
47 \( 1 + 259.T + 1.03e5T^{2} \)
53 \( 1 - 620.T + 1.48e5T^{2} \)
59 \( 1 + 443.T + 2.05e5T^{2} \)
61 \( 1 - 113.T + 2.26e5T^{2} \)
67 \( 1 - 628.T + 3.00e5T^{2} \)
71 \( 1 - 41.3T + 3.57e5T^{2} \)
73 \( 1 - 447.T + 3.89e5T^{2} \)
79 \( 1 - 434.T + 4.93e5T^{2} \)
83 \( 1 + 329.T + 5.71e5T^{2} \)
89 \( 1 + 24.8T + 7.04e5T^{2} \)
97 \( 1 + 499.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.257217952602117657943971032647, −8.415809086529504091380554492404, −7.44411253633220016472732418794, −6.56944104909394703905896873216, −5.87491712499566000103691099947, −4.76597091937008539304522402853, −4.17916067821524939116305170091, −3.43425060383822840895468536265, −2.36133750393549667424038340583, −0.74133009149643687728036443095, 0.74133009149643687728036443095, 2.36133750393549667424038340583, 3.43425060383822840895468536265, 4.17916067821524939116305170091, 4.76597091937008539304522402853, 5.87491712499566000103691099947, 6.56944104909394703905896873216, 7.44411253633220016472732418794, 8.415809086529504091380554492404, 9.257217952602117657943971032647

Graph of the $Z$-function along the critical line