L(s) = 1 | − 8·4-s + 89·13-s + 64·16-s + 56·19-s − 125·25-s − 289·31-s − 433·37-s + 71·43-s − 712·52-s + 719·61-s − 512·64-s + 1.00e3·67-s + 1.19e3·73-s − 448·76-s + 503·79-s − 523·97-s + 1.00e3·100-s − 19·103-s + 2.21e3·109-s + ⋯ |
L(s) = 1 | − 4-s + 1.89·13-s + 16-s + 0.676·19-s − 25-s − 1.67·31-s − 1.92·37-s + 0.251·43-s − 1.89·52-s + 1.50·61-s − 64-s + 1.83·67-s + 1.90·73-s − 0.676·76-s + 0.716·79-s − 0.547·97-s + 100-s − 0.0181·103-s + 1.94·109-s + ⋯ |
Λ(s)=(=(1323s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1323s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.602105260 |
L(21) |
≈ |
1.602105260 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1+p3T2 |
| 5 | 1+p3T2 |
| 11 | 1+p3T2 |
| 13 | 1−89T+p3T2 |
| 17 | 1+p3T2 |
| 19 | 1−56T+p3T2 |
| 23 | 1+p3T2 |
| 29 | 1+p3T2 |
| 31 | 1+289T+p3T2 |
| 37 | 1+433T+p3T2 |
| 41 | 1+p3T2 |
| 43 | 1−71T+p3T2 |
| 47 | 1+p3T2 |
| 53 | 1+p3T2 |
| 59 | 1+p3T2 |
| 61 | 1−719T+p3T2 |
| 67 | 1−1007T+p3T2 |
| 71 | 1+p3T2 |
| 73 | 1−1190T+p3T2 |
| 79 | 1−503T+p3T2 |
| 83 | 1+p3T2 |
| 89 | 1+p3T2 |
| 97 | 1+523T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.163002706359222015692792715617, −8.548609339522697578618203263630, −7.84571362442804508379736964792, −6.77090679114611187415720676639, −5.73241800004350870429436957795, −5.17350018539273291030212347386, −3.82674854515148048284692065925, −3.54914775531436142843934480700, −1.78034677135038308101569687456, −0.66359926916394254861701684044,
0.66359926916394254861701684044, 1.78034677135038308101569687456, 3.54914775531436142843934480700, 3.82674854515148048284692065925, 5.17350018539273291030212347386, 5.73241800004350870429436957795, 6.77090679114611187415720676639, 7.84571362442804508379736964792, 8.548609339522697578618203263630, 9.163002706359222015692792715617