Properties

Label 2-1323-1.1-c3-0-41
Degree $2$
Conductor $1323$
Sign $1$
Analytic cond. $78.0595$
Root an. cond. $8.83513$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·4-s + 89·13-s + 64·16-s + 56·19-s − 125·25-s − 289·31-s − 433·37-s + 71·43-s − 712·52-s + 719·61-s − 512·64-s + 1.00e3·67-s + 1.19e3·73-s − 448·76-s + 503·79-s − 523·97-s + 1.00e3·100-s − 19·103-s + 2.21e3·109-s + ⋯
L(s)  = 1  − 4-s + 1.89·13-s + 16-s + 0.676·19-s − 25-s − 1.67·31-s − 1.92·37-s + 0.251·43-s − 1.89·52-s + 1.50·61-s − 64-s + 1.83·67-s + 1.90·73-s − 0.676·76-s + 0.716·79-s − 0.547·97-s + 100-s − 0.0181·103-s + 1.94·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(78.0595\)
Root analytic conductor: \(8.83513\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1323,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.602105260\)
\(L(\frac12)\) \(\approx\) \(1.602105260\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + p^{3} T^{2} \)
5 \( 1 + p^{3} T^{2} \)
11 \( 1 + p^{3} T^{2} \)
13 \( 1 - 89 T + p^{3} T^{2} \)
17 \( 1 + p^{3} T^{2} \)
19 \( 1 - 56 T + p^{3} T^{2} \)
23 \( 1 + p^{3} T^{2} \)
29 \( 1 + p^{3} T^{2} \)
31 \( 1 + 289 T + p^{3} T^{2} \)
37 \( 1 + 433 T + p^{3} T^{2} \)
41 \( 1 + p^{3} T^{2} \)
43 \( 1 - 71 T + p^{3} T^{2} \)
47 \( 1 + p^{3} T^{2} \)
53 \( 1 + p^{3} T^{2} \)
59 \( 1 + p^{3} T^{2} \)
61 \( 1 - 719 T + p^{3} T^{2} \)
67 \( 1 - 1007 T + p^{3} T^{2} \)
71 \( 1 + p^{3} T^{2} \)
73 \( 1 - 1190 T + p^{3} T^{2} \)
79 \( 1 - 503 T + p^{3} T^{2} \)
83 \( 1 + p^{3} T^{2} \)
89 \( 1 + p^{3} T^{2} \)
97 \( 1 + 523 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.163002706359222015692792715617, −8.548609339522697578618203263630, −7.84571362442804508379736964792, −6.77090679114611187415720676639, −5.73241800004350870429436957795, −5.17350018539273291030212347386, −3.82674854515148048284692065925, −3.54914775531436142843934480700, −1.78034677135038308101569687456, −0.66359926916394254861701684044, 0.66359926916394254861701684044, 1.78034677135038308101569687456, 3.54914775531436142843934480700, 3.82674854515148048284692065925, 5.17350018539273291030212347386, 5.73241800004350870429436957795, 6.77090679114611187415720676639, 7.84571362442804508379736964792, 8.548609339522697578618203263630, 9.163002706359222015692792715617

Graph of the $Z$-function along the critical line