Properties

Label 2-1323-1.1-c3-0-36
Degree $2$
Conductor $1323$
Sign $1$
Analytic cond. $78.0595$
Root an. cond. $8.83513$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.73·2-s + 14.3·4-s + 9.92·5-s − 30.2·8-s − 46.9·10-s + 3.71·11-s + 15.5·13-s + 28.0·16-s − 33.4·17-s − 135.·19-s + 142.·20-s − 17.5·22-s + 87.7·23-s − 26.4·25-s − 73.6·26-s − 242.·29-s + 194.·31-s + 109.·32-s + 158.·34-s − 239.·37-s + 643.·38-s − 300.·40-s + 470.·41-s − 448.·43-s + 53.4·44-s − 415.·46-s + 4.15·47-s + ⋯
L(s)  = 1  − 1.67·2-s + 1.79·4-s + 0.888·5-s − 1.33·8-s − 1.48·10-s + 0.101·11-s + 0.332·13-s + 0.437·16-s − 0.477·17-s − 1.64·19-s + 1.59·20-s − 0.170·22-s + 0.795·23-s − 0.211·25-s − 0.555·26-s − 1.55·29-s + 1.12·31-s + 0.604·32-s + 0.799·34-s − 1.06·37-s + 2.74·38-s − 1.18·40-s + 1.79·41-s − 1.58·43-s + 0.183·44-s − 1.33·46-s + 0.0129·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(78.0595\)
Root analytic conductor: \(8.83513\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1323,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.9279632044\)
\(L(\frac12)\) \(\approx\) \(0.9279632044\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + 4.73T + 8T^{2} \)
5 \( 1 - 9.92T + 125T^{2} \)
11 \( 1 - 3.71T + 1.33e3T^{2} \)
13 \( 1 - 15.5T + 2.19e3T^{2} \)
17 \( 1 + 33.4T + 4.91e3T^{2} \)
19 \( 1 + 135.T + 6.85e3T^{2} \)
23 \( 1 - 87.7T + 1.21e4T^{2} \)
29 \( 1 + 242.T + 2.43e4T^{2} \)
31 \( 1 - 194.T + 2.97e4T^{2} \)
37 \( 1 + 239.T + 5.06e4T^{2} \)
41 \( 1 - 470.T + 6.89e4T^{2} \)
43 \( 1 + 448.T + 7.95e4T^{2} \)
47 \( 1 - 4.15T + 1.03e5T^{2} \)
53 \( 1 - 736.T + 1.48e5T^{2} \)
59 \( 1 - 279.T + 2.05e5T^{2} \)
61 \( 1 - 514.T + 2.26e5T^{2} \)
67 \( 1 + 102.T + 3.00e5T^{2} \)
71 \( 1 - 44.1T + 3.57e5T^{2} \)
73 \( 1 - 901.T + 3.89e5T^{2} \)
79 \( 1 - 1.05e3T + 4.93e5T^{2} \)
83 \( 1 - 487.T + 5.71e5T^{2} \)
89 \( 1 - 963.T + 7.04e5T^{2} \)
97 \( 1 + 726.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.201469306942394824899384266169, −8.656354916581939464317960395147, −7.908415229351685857426441268681, −6.85153724283759710360390840084, −6.37468083428123473232078564898, −5.31722524763747337099803341728, −3.97084032343759934370877409845, −2.42981308880365942153631857327, −1.81117132762125842445054730865, −0.61833833769799951755914455817, 0.61833833769799951755914455817, 1.81117132762125842445054730865, 2.42981308880365942153631857327, 3.97084032343759934370877409845, 5.31722524763747337099803341728, 6.37468083428123473232078564898, 6.85153724283759710360390840084, 7.908415229351685857426441268681, 8.656354916581939464317960395147, 9.201469306942394824899384266169

Graph of the $Z$-function along the critical line