Properties

Label 2-1323-1.1-c3-0-31
Degree $2$
Conductor $1323$
Sign $1$
Analytic cond. $78.0595$
Root an. cond. $8.83513$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.00·2-s + 17.0·4-s − 3.98·5-s − 45.0·8-s + 19.9·10-s + 5.53·11-s + 33.8·13-s + 89.2·16-s − 103.·17-s + 124.·19-s − 67.7·20-s − 27.6·22-s + 151.·23-s − 109.·25-s − 169.·26-s − 103.·29-s − 60.2·31-s − 85.8·32-s + 516.·34-s + 413.·37-s − 620.·38-s + 179.·40-s − 153.·41-s − 261.·43-s + 94.1·44-s − 755.·46-s + 104.·47-s + ⋯
L(s)  = 1  − 1.76·2-s + 2.12·4-s − 0.356·5-s − 1.99·8-s + 0.629·10-s + 0.151·11-s + 0.721·13-s + 1.39·16-s − 1.47·17-s + 1.49·19-s − 0.757·20-s − 0.268·22-s + 1.36·23-s − 0.873·25-s − 1.27·26-s − 0.663·29-s − 0.349·31-s − 0.474·32-s + 2.60·34-s + 1.83·37-s − 2.64·38-s + 0.709·40-s − 0.585·41-s − 0.927·43-s + 0.322·44-s − 2.42·46-s + 0.325·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(78.0595\)
Root analytic conductor: \(8.83513\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1323,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.7320600174\)
\(L(\frac12)\) \(\approx\) \(0.7320600174\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + 5.00T + 8T^{2} \)
5 \( 1 + 3.98T + 125T^{2} \)
11 \( 1 - 5.53T + 1.33e3T^{2} \)
13 \( 1 - 33.8T + 2.19e3T^{2} \)
17 \( 1 + 103.T + 4.91e3T^{2} \)
19 \( 1 - 124.T + 6.85e3T^{2} \)
23 \( 1 - 151.T + 1.21e4T^{2} \)
29 \( 1 + 103.T + 2.43e4T^{2} \)
31 \( 1 + 60.2T + 2.97e4T^{2} \)
37 \( 1 - 413.T + 5.06e4T^{2} \)
41 \( 1 + 153.T + 6.89e4T^{2} \)
43 \( 1 + 261.T + 7.95e4T^{2} \)
47 \( 1 - 104.T + 1.03e5T^{2} \)
53 \( 1 + 716.T + 1.48e5T^{2} \)
59 \( 1 - 647.T + 2.05e5T^{2} \)
61 \( 1 - 269.T + 2.26e5T^{2} \)
67 \( 1 - 483.T + 3.00e5T^{2} \)
71 \( 1 - 362.T + 3.57e5T^{2} \)
73 \( 1 - 908.T + 3.89e5T^{2} \)
79 \( 1 - 162.T + 4.93e5T^{2} \)
83 \( 1 - 419.T + 5.71e5T^{2} \)
89 \( 1 + 1.01e3T + 7.04e5T^{2} \)
97 \( 1 + 346.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.426334367768035963867825046876, −8.462455686737349337440975394142, −7.88822654923396762347571682899, −7.03031702041607994550154935313, −6.43755820580178275849361558030, −5.23082777860916198071305303965, −3.85801123059411121913492777103, −2.70888079683286809722394627717, −1.56985479462041078611502291291, −0.58326202738954682314329749742, 0.58326202738954682314329749742, 1.56985479462041078611502291291, 2.70888079683286809722394627717, 3.85801123059411121913492777103, 5.23082777860916198071305303965, 6.43755820580178275849361558030, 7.03031702041607994550154935313, 7.88822654923396762347571682899, 8.462455686737349337440975394142, 9.426334367768035963867825046876

Graph of the $Z$-function along the critical line