L(s) = 1 | − 4.24·2-s + 9.99·4-s − 16.9·5-s − 8.48·8-s + 71.9·10-s − 16.9·11-s − 29·13-s − 44.0·16-s − 50.9·17-s − 29·19-s − 169.·20-s + 71.9·22-s − 84.8·23-s + 162.·25-s + 123.·26-s − 271.·29-s + 268·31-s + 254.·32-s + 215.·34-s + 83·37-s + 123.·38-s + 143.·40-s − 271.·41-s − 232·43-s − 169.·44-s + 360·46-s − 390.·47-s + ⋯ |
L(s) = 1 | − 1.49·2-s + 1.24·4-s − 1.51·5-s − 0.374·8-s + 2.27·10-s − 0.465·11-s − 0.618·13-s − 0.687·16-s − 0.726·17-s − 0.350·19-s − 1.89·20-s + 0.697·22-s − 0.769·23-s + 1.30·25-s + 0.928·26-s − 1.73·29-s + 1.55·31-s + 1.40·32-s + 1.08·34-s + 0.368·37-s + 0.525·38-s + 0.569·40-s − 1.03·41-s − 0.822·43-s − 0.581·44-s + 1.15·46-s − 1.21·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.01652366805\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.01652366805\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + 4.24T + 8T^{2} \) |
| 5 | \( 1 + 16.9T + 125T^{2} \) |
| 11 | \( 1 + 16.9T + 1.33e3T^{2} \) |
| 13 | \( 1 + 29T + 2.19e3T^{2} \) |
| 17 | \( 1 + 50.9T + 4.91e3T^{2} \) |
| 19 | \( 1 + 29T + 6.85e3T^{2} \) |
| 23 | \( 1 + 84.8T + 1.21e4T^{2} \) |
| 29 | \( 1 + 271.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 268T + 2.97e4T^{2} \) |
| 37 | \( 1 - 83T + 5.06e4T^{2} \) |
| 41 | \( 1 + 271.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 232T + 7.95e4T^{2} \) |
| 47 | \( 1 + 390.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 305.T + 1.48e5T^{2} \) |
| 59 | \( 1 - 288.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 767T + 2.26e5T^{2} \) |
| 67 | \( 1 + 511T + 3.00e5T^{2} \) |
| 71 | \( 1 + 712.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 137T + 3.89e5T^{2} \) |
| 79 | \( 1 + 475T + 4.93e5T^{2} \) |
| 83 | \( 1 - 576.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 254.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 821T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.152316443089471794659179178093, −8.310705070985881812937405618986, −7.88377242399356307969112514146, −7.23455224651181555462884425304, −6.38866383018958728126462993261, −4.87523826574373259637822901004, −4.08709350189885043505217621106, −2.85386112303392669434071620745, −1.64034209015035595189846258349, −0.079910618417228206035140309057,
0.079910618417228206035140309057, 1.64034209015035595189846258349, 2.85386112303392669434071620745, 4.08709350189885043505217621106, 4.87523826574373259637822901004, 6.38866383018958728126462993261, 7.23455224651181555462884425304, 7.88377242399356307969112514146, 8.310705070985881812937405618986, 9.152316443089471794659179178093