Properties

Label 2-1323-1.1-c3-0-2
Degree $2$
Conductor $1323$
Sign $1$
Analytic cond. $78.0595$
Root an. cond. $8.83513$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.24·2-s + 9.99·4-s − 16.9·5-s − 8.48·8-s + 71.9·10-s − 16.9·11-s − 29·13-s − 44.0·16-s − 50.9·17-s − 29·19-s − 169.·20-s + 71.9·22-s − 84.8·23-s + 162.·25-s + 123.·26-s − 271.·29-s + 268·31-s + 254.·32-s + 215.·34-s + 83·37-s + 123.·38-s + 143.·40-s − 271.·41-s − 232·43-s − 169.·44-s + 360·46-s − 390.·47-s + ⋯
L(s)  = 1  − 1.49·2-s + 1.24·4-s − 1.51·5-s − 0.374·8-s + 2.27·10-s − 0.465·11-s − 0.618·13-s − 0.687·16-s − 0.726·17-s − 0.350·19-s − 1.89·20-s + 0.697·22-s − 0.769·23-s + 1.30·25-s + 0.928·26-s − 1.73·29-s + 1.55·31-s + 1.40·32-s + 1.08·34-s + 0.368·37-s + 0.525·38-s + 0.569·40-s − 1.03·41-s − 0.822·43-s − 0.581·44-s + 1.15·46-s − 1.21·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(78.0595\)
Root analytic conductor: \(8.83513\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1323,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.01652366805\)
\(L(\frac12)\) \(\approx\) \(0.01652366805\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + 4.24T + 8T^{2} \)
5 \( 1 + 16.9T + 125T^{2} \)
11 \( 1 + 16.9T + 1.33e3T^{2} \)
13 \( 1 + 29T + 2.19e3T^{2} \)
17 \( 1 + 50.9T + 4.91e3T^{2} \)
19 \( 1 + 29T + 6.85e3T^{2} \)
23 \( 1 + 84.8T + 1.21e4T^{2} \)
29 \( 1 + 271.T + 2.43e4T^{2} \)
31 \( 1 - 268T + 2.97e4T^{2} \)
37 \( 1 - 83T + 5.06e4T^{2} \)
41 \( 1 + 271.T + 6.89e4T^{2} \)
43 \( 1 + 232T + 7.95e4T^{2} \)
47 \( 1 + 390.T + 1.03e5T^{2} \)
53 \( 1 + 305.T + 1.48e5T^{2} \)
59 \( 1 - 288.T + 2.05e5T^{2} \)
61 \( 1 + 767T + 2.26e5T^{2} \)
67 \( 1 + 511T + 3.00e5T^{2} \)
71 \( 1 + 712.T + 3.57e5T^{2} \)
73 \( 1 + 137T + 3.89e5T^{2} \)
79 \( 1 + 475T + 4.93e5T^{2} \)
83 \( 1 - 576.T + 5.71e5T^{2} \)
89 \( 1 + 254.T + 7.04e5T^{2} \)
97 \( 1 + 821T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.152316443089471794659179178093, −8.310705070985881812937405618986, −7.88377242399356307969112514146, −7.23455224651181555462884425304, −6.38866383018958728126462993261, −4.87523826574373259637822901004, −4.08709350189885043505217621106, −2.85386112303392669434071620745, −1.64034209015035595189846258349, −0.079910618417228206035140309057, 0.079910618417228206035140309057, 1.64034209015035595189846258349, 2.85386112303392669434071620745, 4.08709350189885043505217621106, 4.87523826574373259637822901004, 6.38866383018958728126462993261, 7.23455224651181555462884425304, 7.88377242399356307969112514146, 8.310705070985881812937405618986, 9.152316443089471794659179178093

Graph of the $Z$-function along the critical line