Properties

Label 2-1323-1.1-c3-0-157
Degree $2$
Conductor $1323$
Sign $-1$
Analytic cond. $78.0595$
Root an. cond. $8.83513$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.70·2-s + 14.1·4-s − 0.830·5-s + 29.0·8-s − 3.90·10-s − 68.2·11-s + 35.7·13-s + 23.2·16-s − 14.6·17-s − 86.7·19-s − 11.7·20-s − 321.·22-s + 58.4·23-s − 124.·25-s + 168.·26-s − 67.1·29-s + 69.5·31-s − 122.·32-s − 69.0·34-s − 289.·37-s − 408.·38-s − 24.0·40-s + 357.·41-s − 235.·43-s − 966.·44-s + 274.·46-s − 450.·47-s + ⋯
L(s)  = 1  + 1.66·2-s + 1.77·4-s − 0.0742·5-s + 1.28·8-s − 0.123·10-s − 1.87·11-s + 0.763·13-s + 0.363·16-s − 0.209·17-s − 1.04·19-s − 0.131·20-s − 3.11·22-s + 0.529·23-s − 0.994·25-s + 1.27·26-s − 0.429·29-s + 0.402·31-s − 0.677·32-s − 0.348·34-s − 1.28·37-s − 1.74·38-s − 0.0952·40-s + 1.36·41-s − 0.836·43-s − 3.31·44-s + 0.881·46-s − 1.39·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(78.0595\)
Root analytic conductor: \(8.83513\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1323,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 - 4.70T + 8T^{2} \)
5 \( 1 + 0.830T + 125T^{2} \)
11 \( 1 + 68.2T + 1.33e3T^{2} \)
13 \( 1 - 35.7T + 2.19e3T^{2} \)
17 \( 1 + 14.6T + 4.91e3T^{2} \)
19 \( 1 + 86.7T + 6.85e3T^{2} \)
23 \( 1 - 58.4T + 1.21e4T^{2} \)
29 \( 1 + 67.1T + 2.43e4T^{2} \)
31 \( 1 - 69.5T + 2.97e4T^{2} \)
37 \( 1 + 289.T + 5.06e4T^{2} \)
41 \( 1 - 357.T + 6.89e4T^{2} \)
43 \( 1 + 235.T + 7.95e4T^{2} \)
47 \( 1 + 450.T + 1.03e5T^{2} \)
53 \( 1 - 172.T + 1.48e5T^{2} \)
59 \( 1 - 445.T + 2.05e5T^{2} \)
61 \( 1 + 476.T + 2.26e5T^{2} \)
67 \( 1 + 804.T + 3.00e5T^{2} \)
71 \( 1 - 353.T + 3.57e5T^{2} \)
73 \( 1 - 778.T + 3.89e5T^{2} \)
79 \( 1 + 74.1T + 4.93e5T^{2} \)
83 \( 1 - 1.16e3T + 5.71e5T^{2} \)
89 \( 1 + 1.51e3T + 7.04e5T^{2} \)
97 \( 1 + 1.63e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.644912639447778983856983072925, −7.86957563732672172071378761247, −6.93236639591489388779649699711, −6.06584889279584851611108044616, −5.37327438087153302898711962965, −4.63604177812513844000713721965, −3.71854616458668008537437990115, −2.82807773068587826098911251768, −1.94444790600979433188081345551, 0, 1.94444790600979433188081345551, 2.82807773068587826098911251768, 3.71854616458668008537437990115, 4.63604177812513844000713721965, 5.37327438087153302898711962965, 6.06584889279584851611108044616, 6.93236639591489388779649699711, 7.86957563732672172071378761247, 8.644912639447778983856983072925

Graph of the $Z$-function along the critical line