L(s) = 1 | + 3.68·2-s + 5.59·4-s + 11.8·5-s − 8.85·8-s + 43.7·10-s + 22.2·11-s − 75.1·13-s − 77.4·16-s − 74.1·17-s + 7.41·19-s + 66.4·20-s + 81.9·22-s − 205.·23-s + 15.9·25-s − 276.·26-s + 148.·29-s + 164.·31-s − 214.·32-s − 273.·34-s − 205.·37-s + 27.3·38-s − 105.·40-s − 83.9·41-s − 368.·43-s + 124.·44-s − 758.·46-s − 98.3·47-s + ⋯ |
L(s) = 1 | + 1.30·2-s + 0.699·4-s + 1.06·5-s − 0.391·8-s + 1.38·10-s + 0.608·11-s − 1.60·13-s − 1.21·16-s − 1.05·17-s + 0.0895·19-s + 0.743·20-s + 0.793·22-s − 1.86·23-s + 0.127·25-s − 2.08·26-s + 0.949·29-s + 0.952·31-s − 1.18·32-s − 1.37·34-s − 0.911·37-s + 0.116·38-s − 0.415·40-s − 0.319·41-s − 1.30·43-s + 0.426·44-s − 2.43·46-s − 0.305·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 - 3.68T + 8T^{2} \) |
| 5 | \( 1 - 11.8T + 125T^{2} \) |
| 11 | \( 1 - 22.2T + 1.33e3T^{2} \) |
| 13 | \( 1 + 75.1T + 2.19e3T^{2} \) |
| 17 | \( 1 + 74.1T + 4.91e3T^{2} \) |
| 19 | \( 1 - 7.41T + 6.85e3T^{2} \) |
| 23 | \( 1 + 205.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 148.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 164.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 205.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 83.9T + 6.89e4T^{2} \) |
| 43 | \( 1 + 368.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 98.3T + 1.03e5T^{2} \) |
| 53 | \( 1 + 293.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 509.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 696.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 370.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 121.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 682.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 669.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 1.18e3T + 5.71e5T^{2} \) |
| 89 | \( 1 - 598.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 1.03e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.008658865765341269003588856445, −7.970274055766409910854314687143, −6.60195123016602332475928539294, −6.40332907973583896127228169008, −5.27290667958710477924052552893, −4.72868000510255781844456117816, −3.78788673680624213131392684620, −2.59066875326978552986862920174, −1.91419219511509351460931145021, 0,
1.91419219511509351460931145021, 2.59066875326978552986862920174, 3.78788673680624213131392684620, 4.72868000510255781844456117816, 5.27290667958710477924052552893, 6.40332907973583896127228169008, 6.60195123016602332475928539294, 7.970274055766409910854314687143, 9.008658865765341269003588856445