Properties

Label 2-1323-1.1-c3-0-155
Degree $2$
Conductor $1323$
Sign $-1$
Analytic cond. $78.0595$
Root an. cond. $8.83513$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.68·2-s + 5.59·4-s + 11.8·5-s − 8.85·8-s + 43.7·10-s + 22.2·11-s − 75.1·13-s − 77.4·16-s − 74.1·17-s + 7.41·19-s + 66.4·20-s + 81.9·22-s − 205.·23-s + 15.9·25-s − 276.·26-s + 148.·29-s + 164.·31-s − 214.·32-s − 273.·34-s − 205.·37-s + 27.3·38-s − 105.·40-s − 83.9·41-s − 368.·43-s + 124.·44-s − 758.·46-s − 98.3·47-s + ⋯
L(s)  = 1  + 1.30·2-s + 0.699·4-s + 1.06·5-s − 0.391·8-s + 1.38·10-s + 0.608·11-s − 1.60·13-s − 1.21·16-s − 1.05·17-s + 0.0895·19-s + 0.743·20-s + 0.793·22-s − 1.86·23-s + 0.127·25-s − 2.08·26-s + 0.949·29-s + 0.952·31-s − 1.18·32-s − 1.37·34-s − 0.911·37-s + 0.116·38-s − 0.415·40-s − 0.319·41-s − 1.30·43-s + 0.426·44-s − 2.43·46-s − 0.305·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(78.0595\)
Root analytic conductor: \(8.83513\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1323,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 - 3.68T + 8T^{2} \)
5 \( 1 - 11.8T + 125T^{2} \)
11 \( 1 - 22.2T + 1.33e3T^{2} \)
13 \( 1 + 75.1T + 2.19e3T^{2} \)
17 \( 1 + 74.1T + 4.91e3T^{2} \)
19 \( 1 - 7.41T + 6.85e3T^{2} \)
23 \( 1 + 205.T + 1.21e4T^{2} \)
29 \( 1 - 148.T + 2.43e4T^{2} \)
31 \( 1 - 164.T + 2.97e4T^{2} \)
37 \( 1 + 205.T + 5.06e4T^{2} \)
41 \( 1 + 83.9T + 6.89e4T^{2} \)
43 \( 1 + 368.T + 7.95e4T^{2} \)
47 \( 1 + 98.3T + 1.03e5T^{2} \)
53 \( 1 + 293.T + 1.48e5T^{2} \)
59 \( 1 + 509.T + 2.05e5T^{2} \)
61 \( 1 - 696.T + 2.26e5T^{2} \)
67 \( 1 - 370.T + 3.00e5T^{2} \)
71 \( 1 - 121.T + 3.57e5T^{2} \)
73 \( 1 - 682.T + 3.89e5T^{2} \)
79 \( 1 + 669.T + 4.93e5T^{2} \)
83 \( 1 - 1.18e3T + 5.71e5T^{2} \)
89 \( 1 - 598.T + 7.04e5T^{2} \)
97 \( 1 - 1.03e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.008658865765341269003588856445, −7.970274055766409910854314687143, −6.60195123016602332475928539294, −6.40332907973583896127228169008, −5.27290667958710477924052552893, −4.72868000510255781844456117816, −3.78788673680624213131392684620, −2.59066875326978552986862920174, −1.91419219511509351460931145021, 0, 1.91419219511509351460931145021, 2.59066875326978552986862920174, 3.78788673680624213131392684620, 4.72868000510255781844456117816, 5.27290667958710477924052552893, 6.40332907973583896127228169008, 6.60195123016602332475928539294, 7.970274055766409910854314687143, 9.008658865765341269003588856445

Graph of the $Z$-function along the critical line