Properties

Label 2-1323-1.1-c3-0-105
Degree $2$
Conductor $1323$
Sign $-1$
Analytic cond. $78.0595$
Root an. cond. $8.83513$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.44·2-s − 5.92·4-s + 6.60·5-s + 20.0·8-s − 9.52·10-s − 29.1·11-s − 16.7·13-s + 18.4·16-s + 47.1·17-s − 3.43·19-s − 39.0·20-s + 42.0·22-s + 29.5·23-s − 81.3·25-s + 24.2·26-s + 223.·29-s − 120.·31-s − 187.·32-s − 67.9·34-s + 34.9·37-s + 4.94·38-s + 132.·40-s − 192.·41-s − 5.61·43-s + 172.·44-s − 42.5·46-s + 359.·47-s + ⋯
L(s)  = 1  − 0.509·2-s − 0.740·4-s + 0.590·5-s + 0.887·8-s − 0.301·10-s − 0.799·11-s − 0.358·13-s + 0.287·16-s + 0.672·17-s − 0.0414·19-s − 0.437·20-s + 0.407·22-s + 0.267·23-s − 0.651·25-s + 0.182·26-s + 1.43·29-s − 0.699·31-s − 1.03·32-s − 0.342·34-s + 0.155·37-s + 0.0211·38-s + 0.523·40-s − 0.735·41-s − 0.0198·43-s + 0.591·44-s − 0.136·46-s + 1.11·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(78.0595\)
Root analytic conductor: \(8.83513\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1323,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + 1.44T + 8T^{2} \)
5 \( 1 - 6.60T + 125T^{2} \)
11 \( 1 + 29.1T + 1.33e3T^{2} \)
13 \( 1 + 16.7T + 2.19e3T^{2} \)
17 \( 1 - 47.1T + 4.91e3T^{2} \)
19 \( 1 + 3.43T + 6.85e3T^{2} \)
23 \( 1 - 29.5T + 1.21e4T^{2} \)
29 \( 1 - 223.T + 2.43e4T^{2} \)
31 \( 1 + 120.T + 2.97e4T^{2} \)
37 \( 1 - 34.9T + 5.06e4T^{2} \)
41 \( 1 + 192.T + 6.89e4T^{2} \)
43 \( 1 + 5.61T + 7.95e4T^{2} \)
47 \( 1 - 359.T + 1.03e5T^{2} \)
53 \( 1 - 33.2T + 1.48e5T^{2} \)
59 \( 1 + 742.T + 2.05e5T^{2} \)
61 \( 1 + 658.T + 2.26e5T^{2} \)
67 \( 1 - 941.T + 3.00e5T^{2} \)
71 \( 1 + 871.T + 3.57e5T^{2} \)
73 \( 1 - 732.T + 3.89e5T^{2} \)
79 \( 1 - 1.34e3T + 4.93e5T^{2} \)
83 \( 1 - 588.T + 5.71e5T^{2} \)
89 \( 1 - 1.24e3T + 7.04e5T^{2} \)
97 \( 1 + 691.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.991049538446179567816209841001, −8.045628715864446918129525596428, −7.53352136462074041137734691045, −6.35181922857790541529983545127, −5.36653417760125764188263931036, −4.76968205501847693766139252687, −3.59520190683690185664445209989, −2.39999774326099236956391765512, −1.19561187508319816207266681447, 0, 1.19561187508319816207266681447, 2.39999774326099236956391765512, 3.59520190683690185664445209989, 4.76968205501847693766139252687, 5.36653417760125764188263931036, 6.35181922857790541529983545127, 7.53352136462074041137734691045, 8.045628715864446918129525596428, 8.991049538446179567816209841001

Graph of the $Z$-function along the critical line