Properties

Label 2-1323-1.1-c3-0-1
Degree $2$
Conductor $1323$
Sign $1$
Analytic cond. $78.0595$
Root an. cond. $8.83513$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.67·2-s + 13.8·4-s − 15.5·5-s − 27.2·8-s + 72.6·10-s − 63.4·11-s + 53.1·13-s + 16.7·16-s − 68.4·17-s − 86.0·19-s − 215.·20-s + 296.·22-s − 46.9·23-s + 116.·25-s − 248.·26-s + 169.·29-s − 141.·31-s + 139.·32-s + 319.·34-s − 411.·37-s + 402.·38-s + 423.·40-s − 49.0·41-s − 356.·43-s − 878.·44-s + 219.·46-s − 387.·47-s + ⋯
L(s)  = 1  − 1.65·2-s + 1.72·4-s − 1.39·5-s − 1.20·8-s + 2.29·10-s − 1.74·11-s + 1.13·13-s + 0.261·16-s − 0.976·17-s − 1.03·19-s − 2.40·20-s + 2.87·22-s − 0.425·23-s + 0.932·25-s − 1.87·26-s + 1.08·29-s − 0.821·31-s + 0.772·32-s + 1.61·34-s − 1.83·37-s + 1.71·38-s + 1.67·40-s − 0.186·41-s − 1.26·43-s − 3.00·44-s + 0.702·46-s − 1.20·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(78.0595\)
Root analytic conductor: \(8.83513\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1323,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.01402728934\)
\(L(\frac12)\) \(\approx\) \(0.01402728934\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + 4.67T + 8T^{2} \)
5 \( 1 + 15.5T + 125T^{2} \)
11 \( 1 + 63.4T + 1.33e3T^{2} \)
13 \( 1 - 53.1T + 2.19e3T^{2} \)
17 \( 1 + 68.4T + 4.91e3T^{2} \)
19 \( 1 + 86.0T + 6.85e3T^{2} \)
23 \( 1 + 46.9T + 1.21e4T^{2} \)
29 \( 1 - 169.T + 2.43e4T^{2} \)
31 \( 1 + 141.T + 2.97e4T^{2} \)
37 \( 1 + 411.T + 5.06e4T^{2} \)
41 \( 1 + 49.0T + 6.89e4T^{2} \)
43 \( 1 + 356.T + 7.95e4T^{2} \)
47 \( 1 + 387.T + 1.03e5T^{2} \)
53 \( 1 - 184.T + 1.48e5T^{2} \)
59 \( 1 + 627.T + 2.05e5T^{2} \)
61 \( 1 - 821.T + 2.26e5T^{2} \)
67 \( 1 + 95.9T + 3.00e5T^{2} \)
71 \( 1 + 733.T + 3.57e5T^{2} \)
73 \( 1 + 750.T + 3.89e5T^{2} \)
79 \( 1 - 23.5T + 4.93e5T^{2} \)
83 \( 1 + 592.T + 5.71e5T^{2} \)
89 \( 1 - 864.T + 7.04e5T^{2} \)
97 \( 1 - 614.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.915723273373778835269994371599, −8.380141676727533511000602030583, −8.020053755613851084485021948891, −7.13988732184619178975354622754, −6.42198357112769872567442688951, −5.03302943880914697637428259475, −3.94879913533536718407532391964, −2.80673665770956677217644193191, −1.64727491552508987929288088891, −0.07471588277330571986434297865, 0.07471588277330571986434297865, 1.64727491552508987929288088891, 2.80673665770956677217644193191, 3.94879913533536718407532391964, 5.03302943880914697637428259475, 6.42198357112769872567442688951, 7.13988732184619178975354622754, 8.020053755613851084485021948891, 8.380141676727533511000602030583, 8.915723273373778835269994371599

Graph of the $Z$-function along the critical line