Properties

Label 2-1323-1.1-c3-0-0
Degree $2$
Conductor $1323$
Sign $1$
Analytic cond. $78.0595$
Root an. cond. $8.83513$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.76·2-s − 4.86·4-s − 13.0·5-s − 22.7·8-s − 23.0·10-s − 52.9·11-s − 71.7·13-s − 1.32·16-s − 106.·17-s + 53.9·19-s + 63.5·20-s − 93.6·22-s − 18.6·23-s + 45.3·25-s − 126.·26-s − 261.·29-s − 122.·31-s + 179.·32-s − 188.·34-s + 278.·37-s + 95.4·38-s + 297.·40-s + 31.3·41-s − 347.·43-s + 257.·44-s − 33.0·46-s − 542.·47-s + ⋯
L(s)  = 1  + 0.625·2-s − 0.608·4-s − 1.16·5-s − 1.00·8-s − 0.730·10-s − 1.45·11-s − 1.52·13-s − 0.0207·16-s − 1.52·17-s + 0.651·19-s + 0.710·20-s − 0.907·22-s − 0.169·23-s + 0.362·25-s − 0.956·26-s − 1.67·29-s − 0.708·31-s + 0.993·32-s − 0.951·34-s + 1.23·37-s + 0.407·38-s + 1.17·40-s + 0.119·41-s − 1.23·43-s + 0.883·44-s − 0.105·46-s − 1.68·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1323\)    =    \(3^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(78.0595\)
Root analytic conductor: \(8.83513\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1323,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.01317466474\)
\(L(\frac12)\) \(\approx\) \(0.01317466474\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 - 1.76T + 8T^{2} \)
5 \( 1 + 13.0T + 125T^{2} \)
11 \( 1 + 52.9T + 1.33e3T^{2} \)
13 \( 1 + 71.7T + 2.19e3T^{2} \)
17 \( 1 + 106.T + 4.91e3T^{2} \)
19 \( 1 - 53.9T + 6.85e3T^{2} \)
23 \( 1 + 18.6T + 1.21e4T^{2} \)
29 \( 1 + 261.T + 2.43e4T^{2} \)
31 \( 1 + 122.T + 2.97e4T^{2} \)
37 \( 1 - 278.T + 5.06e4T^{2} \)
41 \( 1 - 31.3T + 6.89e4T^{2} \)
43 \( 1 + 347.T + 7.95e4T^{2} \)
47 \( 1 + 542.T + 1.03e5T^{2} \)
53 \( 1 - 257.T + 1.48e5T^{2} \)
59 \( 1 + 315.T + 2.05e5T^{2} \)
61 \( 1 - 138.T + 2.26e5T^{2} \)
67 \( 1 - 397.T + 3.00e5T^{2} \)
71 \( 1 - 843.T + 3.57e5T^{2} \)
73 \( 1 + 872.T + 3.89e5T^{2} \)
79 \( 1 + 554.T + 4.93e5T^{2} \)
83 \( 1 - 297.T + 5.71e5T^{2} \)
89 \( 1 + 102.T + 7.04e5T^{2} \)
97 \( 1 + 515.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.317213490035143149494365981821, −8.259501248012529337970693464824, −7.70565706394104275366536602385, −6.91309891299673494411277694810, −5.57818149490698119003788171828, −4.91384506573205949595512456958, −4.23946213575936815079065119819, −3.28124396318783369939309500597, −2.31512589412499989767793667148, −0.04865050536869086106741872234, 0.04865050536869086106741872234, 2.31512589412499989767793667148, 3.28124396318783369939309500597, 4.23946213575936815079065119819, 4.91384506573205949595512456958, 5.57818149490698119003788171828, 6.91309891299673494411277694810, 7.70565706394104275366536602385, 8.259501248012529337970693464824, 9.317213490035143149494365981821

Graph of the $Z$-function along the critical line