L(s) = 1 | + (1 − i)2-s + i·3-s − 2i·4-s + i·5-s + (1 + i)6-s − 2·7-s + (−2 − 2i)8-s − 9-s + (1 + i)10-s − i·11-s + 2·12-s − 4i·13-s + (−2 + 2i)14-s − 15-s − 4·16-s + 2·17-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)2-s + 0.577i·3-s − i·4-s + 0.447i·5-s + (0.408 + 0.408i)6-s − 0.755·7-s + (−0.707 − 0.707i)8-s − 0.333·9-s + (0.316 + 0.316i)10-s − 0.301i·11-s + 0.577·12-s − 1.10i·13-s + (−0.534 + 0.534i)14-s − 0.258·15-s − 16-s + 0.485·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.488390461\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.488390461\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 + i)T \) |
| 3 | \( 1 - iT \) |
| 5 | \( 1 - iT \) |
| 11 | \( 1 + iT \) |
good | 7 | \( 1 + 2T + 7T^{2} \) |
| 13 | \( 1 + 4iT - 13T^{2} \) |
| 17 | \( 1 - 2T + 17T^{2} \) |
| 19 | \( 1 + 4iT - 19T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 + 6iT - 29T^{2} \) |
| 31 | \( 1 + 6T + 31T^{2} \) |
| 37 | \( 1 + 4iT - 37T^{2} \) |
| 41 | \( 1 - 2T + 41T^{2} \) |
| 43 | \( 1 + 4iT - 43T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 + 14iT - 53T^{2} \) |
| 59 | \( 1 - 59T^{2} \) |
| 61 | \( 1 - 12iT - 61T^{2} \) |
| 67 | \( 1 + 4iT - 67T^{2} \) |
| 71 | \( 1 + 8T + 71T^{2} \) |
| 73 | \( 1 - 10T + 73T^{2} \) |
| 79 | \( 1 - 6T + 79T^{2} \) |
| 83 | \( 1 - 83T^{2} \) |
| 89 | \( 1 - 6T + 89T^{2} \) |
| 97 | \( 1 - 6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.638471008516639167629170350671, −8.842093072953548982634440196592, −7.63258669140183318051372938942, −6.57728991501454290809645543432, −5.77418716619262750038753553825, −5.08074714770612253828345495879, −3.87027941896783486989026666301, −3.25006794480691946776905133526, −2.37433466960853583352494248748, −0.46624707050868904609824847920,
1.71109911464624447268624682019, 3.07390542123489520181533913969, 3.99047038824296281586775739118, 4.99004399972470679869031049815, 5.91126596819999716178306450491, 6.59872974742946963904696170901, 7.33815811557229557774346678912, 8.096153394494681126626379979479, 9.017785275926625322074069984505, 9.618073485672695632543889140831