Properties

Label 2-1320-1.1-c1-0-9
Degree $2$
Conductor $1320$
Sign $1$
Analytic cond. $10.5402$
Root an. cond. $3.24657$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 4·7-s + 9-s + 11-s + 2·13-s − 15-s − 2·17-s + 4·19-s − 4·21-s + 25-s − 27-s − 2·29-s − 33-s + 4·35-s − 2·37-s − 2·39-s − 6·41-s + 45-s + 8·47-s + 9·49-s + 2·51-s − 2·53-s + 55-s − 4·57-s + 4·59-s − 10·61-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 1.51·7-s + 1/3·9-s + 0.301·11-s + 0.554·13-s − 0.258·15-s − 0.485·17-s + 0.917·19-s − 0.872·21-s + 1/5·25-s − 0.192·27-s − 0.371·29-s − 0.174·33-s + 0.676·35-s − 0.328·37-s − 0.320·39-s − 0.937·41-s + 0.149·45-s + 1.16·47-s + 9/7·49-s + 0.280·51-s − 0.274·53-s + 0.134·55-s − 0.529·57-s + 0.520·59-s − 1.28·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1320\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(10.5402\)
Root analytic conductor: \(3.24657\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1320,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.883823192\)
\(L(\frac12)\) \(\approx\) \(1.883823192\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
11 \( 1 - T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.632399140620866568052624915702, −8.821871286475972723014693180634, −8.009566062492333632833163401416, −7.17665204953591422349485387256, −6.24069064176806043982657250764, −5.34851746170090479318781098943, −4.75162937320343842221229075126, −3.67014648079352463457080576580, −2.11052861860361450952195837922, −1.14739005074193094296989473725, 1.14739005074193094296989473725, 2.11052861860361450952195837922, 3.67014648079352463457080576580, 4.75162937320343842221229075126, 5.34851746170090479318781098943, 6.24069064176806043982657250764, 7.17665204953591422349485387256, 8.009566062492333632833163401416, 8.821871286475972723014693180634, 9.632399140620866568052624915702

Graph of the $Z$-function along the critical line