Properties

Label 2-1320-1.1-c1-0-0
Degree $2$
Conductor $1320$
Sign $1$
Analytic cond. $10.5402$
Root an. cond. $3.24657$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 5.12·7-s + 9-s + 11-s − 3.12·13-s + 15-s + 3.12·17-s + 5.12·21-s − 4·23-s + 25-s − 27-s + 2·29-s − 33-s + 5.12·35-s + 6·37-s + 3.12·39-s + 6·41-s + 5.12·43-s − 45-s + 4·47-s + 19.2·49-s − 3.12·51-s − 8.24·53-s − 55-s + 4·59-s + 10·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 1.93·7-s + 0.333·9-s + 0.301·11-s − 0.866·13-s + 0.258·15-s + 0.757·17-s + 1.11·21-s − 0.834·23-s + 0.200·25-s − 0.192·27-s + 0.371·29-s − 0.174·33-s + 0.865·35-s + 0.986·37-s + 0.500·39-s + 0.937·41-s + 0.781·43-s − 0.149·45-s + 0.583·47-s + 2.74·49-s − 0.437·51-s − 1.13·53-s − 0.134·55-s + 0.520·59-s + 1.28·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1320\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(10.5402\)
Root analytic conductor: \(3.24657\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1320,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7429363545\)
\(L(\frac12)\) \(\approx\) \(0.7429363545\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
11 \( 1 - T \)
good7 \( 1 + 5.12T + 7T^{2} \)
13 \( 1 + 3.12T + 13T^{2} \)
17 \( 1 - 3.12T + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 + 4T + 23T^{2} \)
29 \( 1 - 2T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 6T + 37T^{2} \)
41 \( 1 - 6T + 41T^{2} \)
43 \( 1 - 5.12T + 43T^{2} \)
47 \( 1 - 4T + 47T^{2} \)
53 \( 1 + 8.24T + 53T^{2} \)
59 \( 1 - 4T + 59T^{2} \)
61 \( 1 - 10T + 61T^{2} \)
67 \( 1 + 6.24T + 67T^{2} \)
71 \( 1 + 6.24T + 71T^{2} \)
73 \( 1 - 4.87T + 73T^{2} \)
79 \( 1 - 2.24T + 79T^{2} \)
83 \( 1 - 11.3T + 83T^{2} \)
89 \( 1 + 16.2T + 89T^{2} \)
97 \( 1 - 12.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.772311302568421604563812528836, −9.063147881719105273684475345596, −7.81340805931322677559658006624, −7.09668252075945322943668616017, −6.29219006546869943706312695738, −5.67288531197309155059925688884, −4.41501320991189656430309456799, −3.55801716397703883927008569935, −2.58041316894354798002629074743, −0.62247197613638321999312028871, 0.62247197613638321999312028871, 2.58041316894354798002629074743, 3.55801716397703883927008569935, 4.41501320991189656430309456799, 5.67288531197309155059925688884, 6.29219006546869943706312695738, 7.09668252075945322943668616017, 7.81340805931322677559658006624, 9.063147881719105273684475345596, 9.772311302568421604563812528836

Graph of the $Z$-function along the critical line