L(s) = 1 | + 1.73i·2-s − 0.999·4-s + (−0.686 − 2.12i)5-s − 5.04i·7-s + 1.73i·8-s + (3.68 − 1.18i)10-s − 0.627·11-s + 4.25i·13-s + 8.74·14-s − 5·16-s − 1.58i·17-s − 4·19-s + (0.686 + 2.12i)20-s − 1.08i·22-s − 3.46i·23-s + ⋯ |
L(s) = 1 | + 1.22i·2-s − 0.499·4-s + (−0.306 − 0.951i)5-s − 1.90i·7-s + 0.612i·8-s + (1.16 − 0.375i)10-s − 0.189·11-s + 1.18i·13-s + 2.33·14-s − 1.25·16-s − 0.384i·17-s − 0.917·19-s + (0.153 + 0.475i)20-s − 0.231i·22-s − 0.722i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.306 + 0.951i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.306 + 0.951i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8579162563\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8579162563\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.686 + 2.12i)T \) |
| 29 | \( 1 + T \) |
good | 2 | \( 1 - 1.73iT - 2T^{2} \) |
| 7 | \( 1 + 5.04iT - 7T^{2} \) |
| 11 | \( 1 + 0.627T + 11T^{2} \) |
| 13 | \( 1 - 4.25iT - 13T^{2} \) |
| 17 | \( 1 + 1.58iT - 17T^{2} \) |
| 19 | \( 1 + 4T + 19T^{2} \) |
| 23 | \( 1 + 3.46iT - 23T^{2} \) |
| 31 | \( 1 + 3.37T + 31T^{2} \) |
| 37 | \( 1 + 3.16iT - 37T^{2} \) |
| 41 | \( 1 - 4.74T + 41T^{2} \) |
| 43 | \( 1 + 10.8iT - 43T^{2} \) |
| 47 | \( 1 + 10.8iT - 47T^{2} \) |
| 53 | \( 1 + 4.25iT - 53T^{2} \) |
| 59 | \( 1 + 10.7T + 59T^{2} \) |
| 61 | \( 1 - 6T + 61T^{2} \) |
| 67 | \( 1 - 1.87iT - 67T^{2} \) |
| 71 | \( 1 + 6.74T + 71T^{2} \) |
| 73 | \( 1 + 6.92iT - 73T^{2} \) |
| 79 | \( 1 + 11.3T + 79T^{2} \) |
| 83 | \( 1 - 9.80iT - 83T^{2} \) |
| 89 | \( 1 + 0.744T + 89T^{2} \) |
| 97 | \( 1 - 6.92iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.136934184890405325557734012393, −8.518224144674297052768167019294, −7.61774571367510763131156807978, −7.11601202176170365369816251368, −6.43410180247871852000312606233, −5.27452693295993777412933709381, −4.43631103149416162867149898285, −3.89042212788785104759087022990, −1.91202766230064766523254954016, −0.33356172391887945225620828877,
1.77986386512124333407816739865, 2.79818578297069133206855960314, 3.13008792036218194031245019249, 4.43958314593660061371970823524, 5.76411745561887244511703311168, 6.26098378890219883023573557553, 7.51473067449316117400311525708, 8.336539956526798640929930572716, 9.259404528673911481359294642772, 9.950005961606170664285416234819