Properties

Label 2-1305-5.4-c1-0-39
Degree $2$
Conductor $1305$
Sign $0.774 - 0.632i$
Analytic cond. $10.4204$
Root an. cond. $3.22807$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.517i·2-s + 1.73·4-s + (1.73 − 1.41i)5-s + 2.44i·7-s + 1.93i·8-s + (0.732 + 0.896i)10-s + 1.26·11-s − 1.79i·13-s − 1.26·14-s + 2.46·16-s + 1.41i·17-s + 3.26·19-s + (3 − 2.44i)20-s + 0.656i·22-s + 6.31i·23-s + ⋯
L(s)  = 1  + 0.366i·2-s + 0.866·4-s + (0.774 − 0.632i)5-s + 0.925i·7-s + 0.683i·8-s + (0.231 + 0.283i)10-s + 0.382·11-s − 0.497i·13-s − 0.338·14-s + 0.616·16-s + 0.342i·17-s + 0.749·19-s + (0.670 − 0.547i)20-s + 0.139i·22-s + 1.31i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.774 - 0.632i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.774 - 0.632i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1305\)    =    \(3^{2} \cdot 5 \cdot 29\)
Sign: $0.774 - 0.632i$
Analytic conductor: \(10.4204\)
Root analytic conductor: \(3.22807\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1305} (784, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1305,\ (\ :1/2),\ 0.774 - 0.632i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.501483477\)
\(L(\frac12)\) \(\approx\) \(2.501483477\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (-1.73 + 1.41i)T \)
29 \( 1 - T \)
good2 \( 1 - 0.517iT - 2T^{2} \)
7 \( 1 - 2.44iT - 7T^{2} \)
11 \( 1 - 1.26T + 11T^{2} \)
13 \( 1 + 1.79iT - 13T^{2} \)
17 \( 1 - 1.41iT - 17T^{2} \)
19 \( 1 - 3.26T + 19T^{2} \)
23 \( 1 - 6.31iT - 23T^{2} \)
31 \( 1 + 8.73T + 31T^{2} \)
37 \( 1 + 9.14iT - 37T^{2} \)
41 \( 1 - 6.92T + 41T^{2} \)
43 \( 1 - 9.14iT - 43T^{2} \)
47 \( 1 - 1.41iT - 47T^{2} \)
53 \( 1 + 5.93iT - 53T^{2} \)
59 \( 1 + 10.3T + 59T^{2} \)
61 \( 1 - 2.92T + 61T^{2} \)
67 \( 1 + 4.24iT - 67T^{2} \)
71 \( 1 + 3.46T + 71T^{2} \)
73 \( 1 + 7.34iT - 73T^{2} \)
79 \( 1 - 4.19T + 79T^{2} \)
83 \( 1 + 10.1iT - 83T^{2} \)
89 \( 1 - 10.3T + 89T^{2} \)
97 \( 1 - 10.9iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.434585582807516998746029973277, −9.099112680037768184376398674345, −7.993815731179716789995958250124, −7.35643798380364351062798965399, −6.15672906155048793008843565666, −5.74185140181659740906634609545, −5.03275282368382959792285631489, −3.49134581590667326319321262017, −2.36804620841260282479037982889, −1.45732607131558302754149466085, 1.18459633480461727541049630143, 2.28253277097415837472278729178, 3.22672639264062564852996615128, 4.19895240962364984137106134266, 5.50092530078822640510322272217, 6.47472115167800355813335429708, 6.98897406328302919769011621327, 7.64627728506605889852178002707, 8.985577533557513645386761872307, 9.774076061328306375135937992099

Graph of the $Z$-function along the critical line