Properties

Label 2-1305-5.4-c1-0-36
Degree $2$
Conductor $1305$
Sign $0.495 - 0.868i$
Analytic cond. $10.4204$
Root an. cond. $3.22807$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.27i·2-s + 0.380·4-s + (1.10 − 1.94i)5-s − 0.255i·7-s + 3.02i·8-s + (2.47 + 1.40i)10-s + 4.63·11-s + 5.02i·13-s + 0.325·14-s − 3.09·16-s − 0.336i·17-s + 2.91·19-s + (0.421 − 0.739i)20-s + 5.89i·22-s − 8.65i·23-s + ⋯
L(s)  = 1  + 0.899i·2-s + 0.190·4-s + (0.495 − 0.868i)5-s − 0.0966i·7-s + 1.07i·8-s + (0.781 + 0.445i)10-s + 1.39·11-s + 1.39i·13-s + 0.0870·14-s − 0.773·16-s − 0.0815i·17-s + 0.668·19-s + (0.0941 − 0.165i)20-s + 1.25i·22-s − 1.80i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.495 - 0.868i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.495 - 0.868i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1305\)    =    \(3^{2} \cdot 5 \cdot 29\)
Sign: $0.495 - 0.868i$
Analytic conductor: \(10.4204\)
Root analytic conductor: \(3.22807\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1305} (784, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1305,\ (\ :1/2),\ 0.495 - 0.868i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.296848145\)
\(L(\frac12)\) \(\approx\) \(2.296848145\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (-1.10 + 1.94i)T \)
29 \( 1 + T \)
good2 \( 1 - 1.27iT - 2T^{2} \)
7 \( 1 + 0.255iT - 7T^{2} \)
11 \( 1 - 4.63T + 11T^{2} \)
13 \( 1 - 5.02iT - 13T^{2} \)
17 \( 1 + 0.336iT - 17T^{2} \)
19 \( 1 - 2.91T + 19T^{2} \)
23 \( 1 + 8.65iT - 23T^{2} \)
31 \( 1 + 3.26T + 31T^{2} \)
37 \( 1 - 3.86iT - 37T^{2} \)
41 \( 1 - 5.71T + 41T^{2} \)
43 \( 1 - 6.98iT - 43T^{2} \)
47 \( 1 + 0.336iT - 47T^{2} \)
53 \( 1 + 6.01iT - 53T^{2} \)
59 \( 1 - 13.2T + 59T^{2} \)
61 \( 1 + 7.77T + 61T^{2} \)
67 \( 1 - 11.2iT - 67T^{2} \)
71 \( 1 + 13.9T + 71T^{2} \)
73 \( 1 - 8.46iT - 73T^{2} \)
79 \( 1 - 15.3T + 79T^{2} \)
83 \( 1 + 7.60iT - 83T^{2} \)
89 \( 1 - 13.0T + 89T^{2} \)
97 \( 1 + 11.5iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.398507659117832614797532454286, −8.941091145705598911256578436197, −8.201997275969050253568552655407, −7.09586911822293331608863152085, −6.53089565673122438184317085925, −5.83745982453495675837210726455, −4.79326178036366310388332699001, −4.06991917707511968415682556636, −2.39179740552220864057214526050, −1.31302907255214297481008184144, 1.16773014761747608494162207437, 2.23199338019455519856135134316, 3.31591609808190551481260963917, 3.78634453967946975046682950709, 5.48187990581555756807847670852, 6.12933772556578372561212088423, 7.13696259721001325825216665205, 7.65578579104106254764302974413, 9.211139366647384721844282148487, 9.550047141387148789610602612583

Graph of the $Z$-function along the critical line