L(s) = 1 | + 1.78i·2-s − 1.19·4-s + (0.766 + 2.10i)5-s − 4.04i·7-s + 1.43i·8-s + (−3.75 + 1.37i)10-s + 4.80·11-s − 0.533i·13-s + 7.23·14-s − 4.96·16-s − 0.299i·17-s + 6.02·19-s + (−0.919 − 2.51i)20-s + 8.60i·22-s − 0.379i·23-s + ⋯ |
L(s) = 1 | + 1.26i·2-s − 0.599·4-s + (0.343 + 0.939i)5-s − 1.52i·7-s + 0.506i·8-s + (−1.18 + 0.433i)10-s + 1.45·11-s − 0.147i·13-s + 1.93·14-s − 1.24·16-s − 0.0727i·17-s + 1.38·19-s + (−0.205 − 0.562i)20-s + 1.83i·22-s − 0.0790i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.343 - 0.939i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.343 - 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.064913625\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.064913625\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-0.766 - 2.10i)T \) |
| 29 | \( 1 - T \) |
good | 2 | \( 1 - 1.78iT - 2T^{2} \) |
| 7 | \( 1 + 4.04iT - 7T^{2} \) |
| 11 | \( 1 - 4.80T + 11T^{2} \) |
| 13 | \( 1 + 0.533iT - 13T^{2} \) |
| 17 | \( 1 + 0.299iT - 17T^{2} \) |
| 19 | \( 1 - 6.02T + 19T^{2} \) |
| 23 | \( 1 + 0.379iT - 23T^{2} \) |
| 31 | \( 1 - 9.14T + 31T^{2} \) |
| 37 | \( 1 - 8.51iT - 37T^{2} \) |
| 41 | \( 1 + 2.24T + 41T^{2} \) |
| 43 | \( 1 + 6.01iT - 43T^{2} \) |
| 47 | \( 1 + 0.299iT - 47T^{2} \) |
| 53 | \( 1 - 11.8iT - 53T^{2} \) |
| 59 | \( 1 + 6.53T + 59T^{2} \) |
| 61 | \( 1 + 0.755T + 61T^{2} \) |
| 67 | \( 1 - 3.95iT - 67T^{2} \) |
| 71 | \( 1 - 10.6T + 71T^{2} \) |
| 73 | \( 1 + 11.0iT - 73T^{2} \) |
| 79 | \( 1 + 7.01T + 79T^{2} \) |
| 83 | \( 1 + 6.15iT - 83T^{2} \) |
| 89 | \( 1 + 10.0T + 89T^{2} \) |
| 97 | \( 1 - 2.41iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.875292024189542929700477882329, −8.971507349167364162100591778086, −7.85520692054445231688601299721, −7.31118594307119829820958340195, −6.62351818834925643527670756855, −6.19372685747963115065652775221, −4.97260137234829959162209482821, −4.00296084311983286710328378482, −2.97644345060059365473652550203, −1.27618046929398321741596015633,
1.07047449492684355151368099466, 1.96904144178307209467216579214, 2.97258678067441179227819774724, 4.03797670823268630167315148707, 5.01872532869100627633828308371, 5.93232686943844731712152901168, 6.75773805754557290043425163874, 8.178665964849230998827765351108, 8.987022391669807709017955490149, 9.472470936003723018789283884885