Properties

Label 2-1305-5.4-c1-0-29
Degree $2$
Conductor $1305$
Sign $-0.931 + 0.364i$
Analytic cond. $10.4204$
Root an. cond. $3.22807$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.51i·2-s − 4.34·4-s + (−2.08 + 0.814i)5-s + 4.08i·7-s + 5.91i·8-s + (2.05 + 5.24i)10-s − 1.07·11-s − 1.43i·13-s + 10.2·14-s + 6.20·16-s − 6.88i·17-s + 7.42·19-s + (9.05 − 3.54i)20-s + 2.71i·22-s − 1.01i·23-s + ⋯
L(s)  = 1  − 1.78i·2-s − 2.17·4-s + (−0.931 + 0.364i)5-s + 1.54i·7-s + 2.09i·8-s + (0.649 + 1.65i)10-s − 0.325·11-s − 0.397i·13-s + 2.74·14-s + 1.55·16-s − 1.67i·17-s + 1.70·19-s + (2.02 − 0.791i)20-s + 0.579i·22-s − 0.212i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.931 + 0.364i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.931 + 0.364i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1305\)    =    \(3^{2} \cdot 5 \cdot 29\)
Sign: $-0.931 + 0.364i$
Analytic conductor: \(10.4204\)
Root analytic conductor: \(3.22807\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1305} (784, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1305,\ (\ :1/2),\ -0.931 + 0.364i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9159825093\)
\(L(\frac12)\) \(\approx\) \(0.9159825093\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (2.08 - 0.814i)T \)
29 \( 1 + T \)
good2 \( 1 + 2.51iT - 2T^{2} \)
7 \( 1 - 4.08iT - 7T^{2} \)
11 \( 1 + 1.07T + 11T^{2} \)
13 \( 1 + 1.43iT - 13T^{2} \)
17 \( 1 + 6.88iT - 17T^{2} \)
19 \( 1 - 7.42T + 19T^{2} \)
23 \( 1 + 1.01iT - 23T^{2} \)
31 \( 1 + 7.37T + 31T^{2} \)
37 \( 1 - 10.8iT - 37T^{2} \)
41 \( 1 - 3.02T + 41T^{2} \)
43 \( 1 + 10.6iT - 43T^{2} \)
47 \( 1 + 6.88iT - 47T^{2} \)
53 \( 1 + 7.61iT - 53T^{2} \)
59 \( 1 - 9.45T + 59T^{2} \)
61 \( 1 + 0.265T + 61T^{2} \)
67 \( 1 + 11.1iT - 67T^{2} \)
71 \( 1 - 12.1T + 71T^{2} \)
73 \( 1 + 3.54iT - 73T^{2} \)
79 \( 1 - 6.13T + 79T^{2} \)
83 \( 1 + 0.615iT - 83T^{2} \)
89 \( 1 + 2.11T + 89T^{2} \)
97 \( 1 + 1.52iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.456493729127356869746366715485, −8.819116512791543564314217671813, −7.983581619846224298388425291085, −6.98597325792757273185133884237, −5.35683279495282860745992699326, −4.98489961500663023119837333761, −3.54338749256540867908572321042, −2.99845054150616283521683998093, −2.16636464431100601227427607249, −0.50508313319113510134729190445, 1.00137814177975605781126531849, 3.70397918863717092373871326478, 4.11074820276289287942859980744, 5.09112242926666778956215673396, 5.95937368050826339435452966578, 7.00331982023377693267108251227, 7.59651455451584659647740476989, 7.88685538430706166328959137706, 8.914964283196376880583561168517, 9.648500507442993924851423753318

Graph of the $Z$-function along the critical line