L(s) = 1 | − 2i·2-s − 2·4-s + (2 + i)5-s + 2i·7-s + (2 − 4i)10-s + 3·11-s + 4i·13-s + 4·14-s − 4·16-s + 8i·17-s + (−4 − 2i)20-s − 6i·22-s + i·23-s + (3 + 4i)25-s + 8·26-s + ⋯ |
L(s) = 1 | − 1.41i·2-s − 4-s + (0.894 + 0.447i)5-s + 0.755i·7-s + (0.632 − 1.26i)10-s + 0.904·11-s + 1.10i·13-s + 1.06·14-s − 16-s + 1.94i·17-s + (−0.894 − 0.447i)20-s − 1.27i·22-s + 0.208i·23-s + (0.600 + 0.800i)25-s + 1.56·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.895737640\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.895737640\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-2 - i)T \) |
| 29 | \( 1 - T \) |
good | 2 | \( 1 + 2iT - 2T^{2} \) |
| 7 | \( 1 - 2iT - 7T^{2} \) |
| 11 | \( 1 - 3T + 11T^{2} \) |
| 13 | \( 1 - 4iT - 13T^{2} \) |
| 17 | \( 1 - 8iT - 17T^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 23 | \( 1 - iT - 23T^{2} \) |
| 31 | \( 1 + 8T + 31T^{2} \) |
| 37 | \( 1 - 7iT - 37T^{2} \) |
| 41 | \( 1 + 7T + 41T^{2} \) |
| 43 | \( 1 - 9iT - 43T^{2} \) |
| 47 | \( 1 + 12iT - 47T^{2} \) |
| 53 | \( 1 + 9iT - 53T^{2} \) |
| 59 | \( 1 - 10T + 59T^{2} \) |
| 61 | \( 1 - 2T + 61T^{2} \) |
| 67 | \( 1 + 8iT - 67T^{2} \) |
| 71 | \( 1 - 8T + 71T^{2} \) |
| 73 | \( 1 + iT - 73T^{2} \) |
| 79 | \( 1 - 10T + 79T^{2} \) |
| 83 | \( 1 + 9iT - 83T^{2} \) |
| 89 | \( 1 - 10T + 89T^{2} \) |
| 97 | \( 1 + 13iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.757830890324680421257500645776, −9.087984649008141095164856247320, −8.431790346998482419687020396985, −6.80125036026447721708620469006, −6.36868223560415642204125320538, −5.27356761140796604447676436149, −4.02770147782157486020210128698, −3.31025327241847479150162293105, −1.98979331973206540154965494133, −1.66837869397666754533906565074,
0.808983604750814900464099448857, 2.46081331880117024809509595742, 3.93877574367662835515018825413, 5.09538745232020226661396787702, 5.50795266801216663163731395857, 6.52940572166120069586844787306, 7.16829402594956136890185706198, 7.83505957045947584722038934808, 8.943330686626200754391810227476, 9.304651197910903090142827882416