Properties

Label 2-1305-5.4-c1-0-12
Degree $2$
Conductor $1305$
Sign $-0.977 + 0.210i$
Analytic cond. $10.4204$
Root an. cond. $3.22807$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.73i·2-s − 0.999·4-s + (2.18 − 0.469i)5-s + 1.58i·7-s + 1.73i·8-s + (0.813 + 3.78i)10-s − 6.37·11-s + 0.939i·13-s − 2.74·14-s − 5·16-s + 5.04i·17-s − 4·19-s + (−2.18 + 0.469i)20-s − 11.0i·22-s − 3.46i·23-s + ⋯
L(s)  = 1  + 1.22i·2-s − 0.499·4-s + (0.977 − 0.210i)5-s + 0.598i·7-s + 0.612i·8-s + (0.257 + 1.19i)10-s − 1.92·11-s + 0.260i·13-s − 0.733·14-s − 1.25·16-s + 1.22i·17-s − 0.917·19-s + (−0.488 + 0.105i)20-s − 2.35i·22-s − 0.722i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.977 + 0.210i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.977 + 0.210i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1305\)    =    \(3^{2} \cdot 5 \cdot 29\)
Sign: $-0.977 + 0.210i$
Analytic conductor: \(10.4204\)
Root analytic conductor: \(3.22807\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1305} (784, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1305,\ (\ :1/2),\ -0.977 + 0.210i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.362479356\)
\(L(\frac12)\) \(\approx\) \(1.362479356\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (-2.18 + 0.469i)T \)
29 \( 1 + T \)
good2 \( 1 - 1.73iT - 2T^{2} \)
7 \( 1 - 1.58iT - 7T^{2} \)
11 \( 1 + 6.37T + 11T^{2} \)
13 \( 1 - 0.939iT - 13T^{2} \)
17 \( 1 - 5.04iT - 17T^{2} \)
19 \( 1 + 4T + 19T^{2} \)
23 \( 1 + 3.46iT - 23T^{2} \)
31 \( 1 - 2.37T + 31T^{2} \)
37 \( 1 - 10.0iT - 37T^{2} \)
41 \( 1 + 6.74T + 41T^{2} \)
43 \( 1 - 5.69iT - 43T^{2} \)
47 \( 1 - 5.69iT - 47T^{2} \)
53 \( 1 + 0.939iT - 53T^{2} \)
59 \( 1 - 0.744T + 59T^{2} \)
61 \( 1 - 6T + 61T^{2} \)
67 \( 1 - 8.51iT - 67T^{2} \)
71 \( 1 - 4.74T + 71T^{2} \)
73 \( 1 + 6.92iT - 73T^{2} \)
79 \( 1 + 5.62T + 79T^{2} \)
83 \( 1 + 16.7iT - 83T^{2} \)
89 \( 1 - 10.7T + 89T^{2} \)
97 \( 1 - 6.92iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.14420344260843115833212263566, −8.859464315198959907756663330677, −8.392356715868085465048960254930, −7.71409943742768091831827117097, −6.51092187021437559607256727027, −6.10048431651004580242421919663, −5.25606559183777277517886688200, −4.64308328006121757131520599320, −2.77137083396353360471567422121, −1.98867669896816222221939369017, 0.50637135791050198570641533203, 2.05895958927615268588247061142, 2.65395071942177938444270968474, 3.65493315569520899609632918764, 4.92019331034461521528071545333, 5.63567115529696747756206491348, 6.86927819880008607321345877625, 7.49744995121491811356411280126, 8.666165626059160603391485510426, 9.642844749200554176990629068724

Graph of the $Z$-function along the critical line