L(s) = 1 | + 2.62i·2-s − 4.89·4-s + (1.48 + 1.67i)5-s − 1.33i·7-s − 7.58i·8-s + (−4.39 + 3.88i)10-s − 4.65·11-s + 6.90i·13-s + 3.51·14-s + 10.1·16-s − 6.12i·17-s − 3.89·19-s + (−7.24 − 8.18i)20-s − 12.2i·22-s − 2.21i·23-s + ⋯ |
L(s) = 1 | + 1.85i·2-s − 2.44·4-s + (0.662 + 0.748i)5-s − 0.506i·7-s − 2.68i·8-s + (−1.39 + 1.23i)10-s − 1.40·11-s + 1.91i·13-s + 0.940·14-s + 2.53·16-s − 1.48i·17-s − 0.894·19-s + (−1.62 − 1.83i)20-s − 2.60i·22-s − 0.461i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.662 + 0.748i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.662 + 0.748i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2482310263\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2482310263\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-1.48 - 1.67i)T \) |
| 29 | \( 1 + T \) |
good | 2 | \( 1 - 2.62iT - 2T^{2} \) |
| 7 | \( 1 + 1.33iT - 7T^{2} \) |
| 11 | \( 1 + 4.65T + 11T^{2} \) |
| 13 | \( 1 - 6.90iT - 13T^{2} \) |
| 17 | \( 1 + 6.12iT - 17T^{2} \) |
| 19 | \( 1 + 3.89T + 19T^{2} \) |
| 23 | \( 1 + 2.21iT - 23T^{2} \) |
| 31 | \( 1 + 6.88T + 31T^{2} \) |
| 37 | \( 1 - 5.79iT - 37T^{2} \) |
| 41 | \( 1 + 7.05T + 41T^{2} \) |
| 43 | \( 1 + 11.9iT - 43T^{2} \) |
| 47 | \( 1 + 6.12iT - 47T^{2} \) |
| 53 | \( 1 + 1.31iT - 53T^{2} \) |
| 59 | \( 1 - 6.20T + 59T^{2} \) |
| 61 | \( 1 + 14.2T + 61T^{2} \) |
| 67 | \( 1 - 3.00iT - 67T^{2} \) |
| 71 | \( 1 - 6.04T + 71T^{2} \) |
| 73 | \( 1 - 4.47iT - 73T^{2} \) |
| 79 | \( 1 - 1.31T + 79T^{2} \) |
| 83 | \( 1 + 4.20iT - 83T^{2} \) |
| 89 | \( 1 - 0.232T + 89T^{2} \) |
| 97 | \( 1 - 2.99iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.06746373921167285390170517636, −9.254664184254643594907595570391, −8.631727853183409176619702826335, −7.53460072091568692665478578689, −6.98000360586313253857879952667, −6.54157202810782545101699654112, −5.45183886374401532590691602962, −4.84138651782698870402439276655, −3.79513442689632940155174305499, −2.25798200554752673514102601346,
0.099821713690000123534637619815, 1.55004825545321641840850171508, 2.46098236379939347301758520425, 3.31672975751760788004955223548, 4.46783896101280288880227082675, 5.43310733355626401223214087170, 5.81182213837020018641081722676, 7.947531461622397250861305245828, 8.351377242605352902785455808710, 9.229355344394198297395347151350