L(s) = 1 | + i·4-s − i·5-s + (−1 − i)7-s + (1 − i)13-s − 16-s + 20-s + (1 − i)23-s − 25-s + (1 − i)28-s − i·29-s + (−1 + i)35-s + i·49-s + (1 + i)52-s + (1 − i)53-s + 2i·59-s + ⋯ |
L(s) = 1 | + i·4-s − i·5-s + (−1 − i)7-s + (1 − i)13-s − 16-s + 20-s + (1 − i)23-s − 25-s + (1 − i)28-s − i·29-s + (−1 + i)35-s + i·49-s + (1 + i)52-s + (1 − i)53-s + 2i·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.525 + 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.525 + 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9240038691\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9240038691\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + iT \) |
| 29 | \( 1 + iT \) |
good | 2 | \( 1 - iT^{2} \) |
| 7 | \( 1 + (1 + i)T + iT^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + (-1 + i)T - iT^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + (-1 + i)T - iT^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + (-1 + i)T - iT^{2} \) |
| 59 | \( 1 - 2iT - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + (-1 - i)T + iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + (1 - i)T - iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.656032733823675555912549513925, −8.713964683257326198593180607220, −8.235167077384079541482623192683, −7.32418807031249877466122374417, −6.54658043699249328741430300525, −5.51342830395093572867571532635, −4.31278416644434131834467802188, −3.72951469275092571050344583144, −2.72896600927028467486062128253, −0.823605612749546619287545682450,
1.70273985209171435836332150353, 2.83925183425261035585244694899, 3.76001498082527382282625424920, 5.15327193117871385703819638045, 5.99638669612119762934698929537, 6.53920060225715955635184696216, 7.20836192124090762125305406272, 8.650729164496488770198983932516, 9.321189407297538903634678514303, 9.838494888648135015458781081418