Properties

Label 2-1305-1.1-c3-0-47
Degree $2$
Conductor $1305$
Sign $1$
Analytic cond. $76.9974$
Root an. cond. $8.77482$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.54·2-s + 4.59·4-s + 5·5-s − 21.2·7-s − 12.0·8-s + 17.7·10-s + 40.9·11-s − 8.89·13-s − 75.4·14-s − 79.6·16-s + 7.68·17-s + 40.7·19-s + 22.9·20-s + 145.·22-s + 80.7·23-s + 25·25-s − 31.5·26-s − 97.6·28-s − 29·29-s + 82.1·31-s − 185.·32-s + 27.2·34-s − 106.·35-s + 223.·37-s + 144.·38-s − 60.4·40-s + 274.·41-s + ⋯
L(s)  = 1  + 1.25·2-s + 0.574·4-s + 0.447·5-s − 1.14·7-s − 0.534·8-s + 0.561·10-s + 1.12·11-s − 0.189·13-s − 1.44·14-s − 1.24·16-s + 0.109·17-s + 0.492·19-s + 0.256·20-s + 1.40·22-s + 0.731·23-s + 0.200·25-s − 0.238·26-s − 0.659·28-s − 0.185·29-s + 0.475·31-s − 1.02·32-s + 0.137·34-s − 0.513·35-s + 0.992·37-s + 0.617·38-s − 0.238·40-s + 1.04·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1305\)    =    \(3^{2} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(76.9974\)
Root analytic conductor: \(8.77482\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1305,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.858548112\)
\(L(\frac12)\) \(\approx\) \(3.858548112\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - 5T \)
29 \( 1 + 29T \)
good2 \( 1 - 3.54T + 8T^{2} \)
7 \( 1 + 21.2T + 343T^{2} \)
11 \( 1 - 40.9T + 1.33e3T^{2} \)
13 \( 1 + 8.89T + 2.19e3T^{2} \)
17 \( 1 - 7.68T + 4.91e3T^{2} \)
19 \( 1 - 40.7T + 6.85e3T^{2} \)
23 \( 1 - 80.7T + 1.21e4T^{2} \)
31 \( 1 - 82.1T + 2.97e4T^{2} \)
37 \( 1 - 223.T + 5.06e4T^{2} \)
41 \( 1 - 274.T + 6.89e4T^{2} \)
43 \( 1 - 53.7T + 7.95e4T^{2} \)
47 \( 1 + 17.0T + 1.03e5T^{2} \)
53 \( 1 - 23.0T + 1.48e5T^{2} \)
59 \( 1 - 399.T + 2.05e5T^{2} \)
61 \( 1 - 388.T + 2.26e5T^{2} \)
67 \( 1 - 399.T + 3.00e5T^{2} \)
71 \( 1 + 92.2T + 3.57e5T^{2} \)
73 \( 1 - 979.T + 3.89e5T^{2} \)
79 \( 1 - 62.2T + 4.93e5T^{2} \)
83 \( 1 + 163.T + 5.71e5T^{2} \)
89 \( 1 + 1.37e3T + 7.04e5T^{2} \)
97 \( 1 - 1.26e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.464544056301145447514323150700, −8.645757908813601365661513795441, −7.23940883615385833476897027727, −6.47865931831363076916321176462, −5.94764447542265941063494401787, −5.03144659983891614715506777157, −4.05559119200299172787473409784, −3.31521218844110823993166677023, −2.43289973869564801422534187091, −0.819810116994125049973339714016, 0.819810116994125049973339714016, 2.43289973869564801422534187091, 3.31521218844110823993166677023, 4.05559119200299172787473409784, 5.03144659983891614715506777157, 5.94764447542265941063494401787, 6.47865931831363076916321176462, 7.23940883615385833476897027727, 8.645757908813601365661513795441, 9.464544056301145447514323150700

Graph of the $Z$-function along the critical line