Properties

Label 2-1305-1.1-c3-0-32
Degree $2$
Conductor $1305$
Sign $1$
Analytic cond. $76.9974$
Root an. cond. $8.77482$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.42·2-s + 21.4·4-s + 5·5-s − 10.2·7-s − 73.0·8-s − 27.1·10-s − 12.6·11-s + 84.2·13-s + 55.5·14-s + 224.·16-s − 6.89·17-s − 79.7·19-s + 107.·20-s + 68.5·22-s + 73.8·23-s + 25·25-s − 457.·26-s − 219.·28-s − 29·29-s + 0.254·31-s − 635.·32-s + 37.4·34-s − 51.1·35-s + 40.4·37-s + 432.·38-s − 365.·40-s − 208.·41-s + ⋯
L(s)  = 1  − 1.91·2-s + 2.68·4-s + 0.447·5-s − 0.552·7-s − 3.22·8-s − 0.858·10-s − 0.346·11-s + 1.79·13-s + 1.06·14-s + 3.51·16-s − 0.0983·17-s − 0.962·19-s + 1.19·20-s + 0.664·22-s + 0.669·23-s + 0.200·25-s − 3.44·26-s − 1.48·28-s − 0.185·29-s + 0.00147·31-s − 3.50·32-s + 0.188·34-s − 0.247·35-s + 0.179·37-s + 1.84·38-s − 1.44·40-s − 0.793·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1305\)    =    \(3^{2} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(76.9974\)
Root analytic conductor: \(8.77482\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1305,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.8257481923\)
\(L(\frac12)\) \(\approx\) \(0.8257481923\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - 5T \)
29 \( 1 + 29T \)
good2 \( 1 + 5.42T + 8T^{2} \)
7 \( 1 + 10.2T + 343T^{2} \)
11 \( 1 + 12.6T + 1.33e3T^{2} \)
13 \( 1 - 84.2T + 2.19e3T^{2} \)
17 \( 1 + 6.89T + 4.91e3T^{2} \)
19 \( 1 + 79.7T + 6.85e3T^{2} \)
23 \( 1 - 73.8T + 1.21e4T^{2} \)
31 \( 1 - 0.254T + 2.97e4T^{2} \)
37 \( 1 - 40.4T + 5.06e4T^{2} \)
41 \( 1 + 208.T + 6.89e4T^{2} \)
43 \( 1 + 194.T + 7.95e4T^{2} \)
47 \( 1 - 522.T + 1.03e5T^{2} \)
53 \( 1 - 294.T + 1.48e5T^{2} \)
59 \( 1 - 196.T + 2.05e5T^{2} \)
61 \( 1 - 189.T + 2.26e5T^{2} \)
67 \( 1 + 570.T + 3.00e5T^{2} \)
71 \( 1 - 1.12e3T + 3.57e5T^{2} \)
73 \( 1 - 581.T + 3.89e5T^{2} \)
79 \( 1 + 255.T + 4.93e5T^{2} \)
83 \( 1 - 983.T + 5.71e5T^{2} \)
89 \( 1 + 678.T + 7.04e5T^{2} \)
97 \( 1 + 30.8T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.168325601738725054973203278229, −8.614018995695859282453440683987, −7.988602201365386443516327851363, −6.84606818260857607075460626778, −6.41507176708109832898151333477, −5.54356370076393828946485483322, −3.70167586759197876619678908477, −2.64022643579589217851844746362, −1.62451858496124770010980823076, −0.62430851322047967491468507308, 0.62430851322047967491468507308, 1.62451858496124770010980823076, 2.64022643579589217851844746362, 3.70167586759197876619678908477, 5.54356370076393828946485483322, 6.41507176708109832898151333477, 6.84606818260857607075460626778, 7.988602201365386443516327851363, 8.614018995695859282453440683987, 9.168325601738725054973203278229

Graph of the $Z$-function along the critical line