Properties

Label 2-1305-1.1-c3-0-113
Degree $2$
Conductor $1305$
Sign $1$
Analytic cond. $76.9974$
Root an. cond. $8.77482$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.05·2-s + 17.5·4-s + 5·5-s + 19.3·7-s + 48.0·8-s + 25.2·10-s − 6.81·11-s + 36.9·13-s + 97.9·14-s + 102.·16-s + 71.5·17-s + 88.3·19-s + 87.5·20-s − 34.4·22-s − 185.·23-s + 25·25-s + 186.·26-s + 339.·28-s − 29·29-s − 120.·31-s + 133.·32-s + 361.·34-s + 96.9·35-s − 117.·37-s + 445.·38-s + 240.·40-s + 229.·41-s + ⋯
L(s)  = 1  + 1.78·2-s + 2.18·4-s + 0.447·5-s + 1.04·7-s + 2.12·8-s + 0.798·10-s − 0.186·11-s + 0.788·13-s + 1.86·14-s + 1.60·16-s + 1.02·17-s + 1.06·19-s + 0.978·20-s − 0.333·22-s − 1.68·23-s + 0.200·25-s + 1.40·26-s + 2.29·28-s − 0.185·29-s − 0.697·31-s + 0.736·32-s + 1.82·34-s + 0.468·35-s − 0.521·37-s + 1.90·38-s + 0.948·40-s + 0.874·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1305\)    =    \(3^{2} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(76.9974\)
Root analytic conductor: \(8.77482\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1305,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(9.039505933\)
\(L(\frac12)\) \(\approx\) \(9.039505933\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - 5T \)
29 \( 1 + 29T \)
good2 \( 1 - 5.05T + 8T^{2} \)
7 \( 1 - 19.3T + 343T^{2} \)
11 \( 1 + 6.81T + 1.33e3T^{2} \)
13 \( 1 - 36.9T + 2.19e3T^{2} \)
17 \( 1 - 71.5T + 4.91e3T^{2} \)
19 \( 1 - 88.3T + 6.85e3T^{2} \)
23 \( 1 + 185.T + 1.21e4T^{2} \)
31 \( 1 + 120.T + 2.97e4T^{2} \)
37 \( 1 + 117.T + 5.06e4T^{2} \)
41 \( 1 - 229.T + 6.89e4T^{2} \)
43 \( 1 - 66.8T + 7.95e4T^{2} \)
47 \( 1 - 42.0T + 1.03e5T^{2} \)
53 \( 1 + 9.42T + 1.48e5T^{2} \)
59 \( 1 - 232.T + 2.05e5T^{2} \)
61 \( 1 + 546.T + 2.26e5T^{2} \)
67 \( 1 - 953.T + 3.00e5T^{2} \)
71 \( 1 + 429.T + 3.57e5T^{2} \)
73 \( 1 - 554.T + 3.89e5T^{2} \)
79 \( 1 - 965.T + 4.93e5T^{2} \)
83 \( 1 + 625.T + 5.71e5T^{2} \)
89 \( 1 - 271.T + 7.04e5T^{2} \)
97 \( 1 - 1.16e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.387107932630598617799241810789, −8.097821472989554184082380410203, −7.51626309022680249450619557916, −6.41535057262501688224037579848, −5.60636683820418129333486749737, −5.19677427578860267863209889746, −4.12863180188214425155256905578, −3.39574750201322704650397877823, −2.23978371928515366652093229612, −1.34101284007026192823134828260, 1.34101284007026192823134828260, 2.23978371928515366652093229612, 3.39574750201322704650397877823, 4.12863180188214425155256905578, 5.19677427578860267863209889746, 5.60636683820418129333486749737, 6.41535057262501688224037579848, 7.51626309022680249450619557916, 8.097821472989554184082380410203, 9.387107932630598617799241810789

Graph of the $Z$-function along the critical line