L(s) = 1 | + 2.16·2-s + 2.68·4-s − 5-s − 4.84·7-s + 1.48·8-s − 2.16·10-s − 3·11-s + 0.519·13-s − 10.4·14-s − 2.16·16-s + 2.84·17-s − 3.36·19-s − 2.68·20-s − 6.49·22-s − 6.80·23-s + 25-s + 1.12·26-s − 13.0·28-s + 29-s − 7.64·32-s + 6.16·34-s + 4.84·35-s + 10.8·37-s − 7.28·38-s − 1.48·40-s − 7.84·41-s + 4.17·43-s + ⋯ |
L(s) = 1 | + 1.53·2-s + 1.34·4-s − 0.447·5-s − 1.83·7-s + 0.523·8-s − 0.684·10-s − 0.904·11-s + 0.144·13-s − 2.80·14-s − 0.541·16-s + 0.690·17-s − 0.772·19-s − 0.600·20-s − 1.38·22-s − 1.41·23-s + 0.200·25-s + 0.220·26-s − 2.45·28-s + 0.185·29-s − 1.35·32-s + 1.05·34-s + 0.819·35-s + 1.77·37-s − 1.18·38-s − 0.234·40-s − 1.22·41-s + 0.636·43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + T \) |
| 29 | \( 1 - T \) |
good | 2 | \( 1 - 2.16T + 2T^{2} \) |
| 7 | \( 1 + 4.84T + 7T^{2} \) |
| 11 | \( 1 + 3T + 11T^{2} \) |
| 13 | \( 1 - 0.519T + 13T^{2} \) |
| 17 | \( 1 - 2.84T + 17T^{2} \) |
| 19 | \( 1 + 3.36T + 19T^{2} \) |
| 23 | \( 1 + 6.80T + 23T^{2} \) |
| 31 | \( 1 + 31T^{2} \) |
| 37 | \( 1 - 10.8T + 37T^{2} \) |
| 41 | \( 1 + 7.84T + 41T^{2} \) |
| 43 | \( 1 - 4.17T + 43T^{2} \) |
| 47 | \( 1 + 6.21T + 47T^{2} \) |
| 53 | \( 1 + 3.44T + 53T^{2} \) |
| 59 | \( 1 + 12.3T + 59T^{2} \) |
| 61 | \( 1 - 5.36T + 61T^{2} \) |
| 67 | \( 1 + 15.8T + 67T^{2} \) |
| 71 | \( 1 - 14.9T + 71T^{2} \) |
| 73 | \( 1 - 8.58T + 73T^{2} \) |
| 79 | \( 1 + 1.59T + 79T^{2} \) |
| 83 | \( 1 - 6.48T + 83T^{2} \) |
| 89 | \( 1 + 14.4T + 89T^{2} \) |
| 97 | \( 1 - 11.1T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.440958131126776785419356149282, −8.255787825238577410852060673996, −7.33866108089632806735582357876, −6.27967064631483561479141928563, −6.03841958613424277644585438115, −4.89447070002354091948459157011, −3.93279128336953048778324803374, −3.26823824358493386232514481078, −2.45958085695007722759384711939, 0,
2.45958085695007722759384711939, 3.26823824358493386232514481078, 3.93279128336953048778324803374, 4.89447070002354091948459157011, 6.03841958613424277644585438115, 6.27967064631483561479141928563, 7.33866108089632806735582357876, 8.255787825238577410852060673996, 9.440958131126776785419356149282