Properties

Label 2-1305-1.1-c1-0-47
Degree $2$
Conductor $1305$
Sign $-1$
Analytic cond. $10.4204$
Root an. cond. $3.22807$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.16·2-s + 2.68·4-s − 5-s − 4.84·7-s + 1.48·8-s − 2.16·10-s − 3·11-s + 0.519·13-s − 10.4·14-s − 2.16·16-s + 2.84·17-s − 3.36·19-s − 2.68·20-s − 6.49·22-s − 6.80·23-s + 25-s + 1.12·26-s − 13.0·28-s + 29-s − 7.64·32-s + 6.16·34-s + 4.84·35-s + 10.8·37-s − 7.28·38-s − 1.48·40-s − 7.84·41-s + 4.17·43-s + ⋯
L(s)  = 1  + 1.53·2-s + 1.34·4-s − 0.447·5-s − 1.83·7-s + 0.523·8-s − 0.684·10-s − 0.904·11-s + 0.144·13-s − 2.80·14-s − 0.541·16-s + 0.690·17-s − 0.772·19-s − 0.600·20-s − 1.38·22-s − 1.41·23-s + 0.200·25-s + 0.220·26-s − 2.45·28-s + 0.185·29-s − 1.35·32-s + 1.05·34-s + 0.819·35-s + 1.77·37-s − 1.18·38-s − 0.234·40-s − 1.22·41-s + 0.636·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1305 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1305\)    =    \(3^{2} \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(10.4204\)
Root analytic conductor: \(3.22807\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1305,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + T \)
29 \( 1 - T \)
good2 \( 1 - 2.16T + 2T^{2} \)
7 \( 1 + 4.84T + 7T^{2} \)
11 \( 1 + 3T + 11T^{2} \)
13 \( 1 - 0.519T + 13T^{2} \)
17 \( 1 - 2.84T + 17T^{2} \)
19 \( 1 + 3.36T + 19T^{2} \)
23 \( 1 + 6.80T + 23T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 10.8T + 37T^{2} \)
41 \( 1 + 7.84T + 41T^{2} \)
43 \( 1 - 4.17T + 43T^{2} \)
47 \( 1 + 6.21T + 47T^{2} \)
53 \( 1 + 3.44T + 53T^{2} \)
59 \( 1 + 12.3T + 59T^{2} \)
61 \( 1 - 5.36T + 61T^{2} \)
67 \( 1 + 15.8T + 67T^{2} \)
71 \( 1 - 14.9T + 71T^{2} \)
73 \( 1 - 8.58T + 73T^{2} \)
79 \( 1 + 1.59T + 79T^{2} \)
83 \( 1 - 6.48T + 83T^{2} \)
89 \( 1 + 14.4T + 89T^{2} \)
97 \( 1 - 11.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.440958131126776785419356149282, −8.255787825238577410852060673996, −7.33866108089632806735582357876, −6.27967064631483561479141928563, −6.03841958613424277644585438115, −4.89447070002354091948459157011, −3.93279128336953048778324803374, −3.26823824358493386232514481078, −2.45958085695007722759384711939, 0, 2.45958085695007722759384711939, 3.26823824358493386232514481078, 3.93279128336953048778324803374, 4.89447070002354091948459157011, 6.03841958613424277644585438115, 6.27967064631483561479141928563, 7.33866108089632806735582357876, 8.255787825238577410852060673996, 9.440958131126776785419356149282

Graph of the $Z$-function along the critical line